
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

10.4
Recursion as self reductions
FLNAME:10.4.0.0

Har-Peled (UIUC) CS374 38 Fall 2020 38 / 102



Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction
1 reduce problem to a smaller instance of itself
2 self-reduction
1 Problem instance of size n is reduced to one or more instances of size n− 1 or less.
2 For termination, problem instances of small size are solved by some other method

as base cases

Har-Peled (UIUC) CS374 39 Fall 2020 39 / 102



Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction
1 reduce problem to a smaller instance of itself
2 self-reduction
1 Problem instance of size n is reduced to one or more instances of size n− 1 or less.
2 For termination, problem instances of small size are solved by some other method

as base cases

Har-Peled (UIUC) CS374 39 Fall 2020 39 / 102



Recursion

1 Recursion is a very powerful and fundamental technique
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)
4 Recurrences arise in analysis

Har-Peled (UIUC) CS374 40 Fall 2020 40 / 102



Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

Har-Peled (UIUC) CS374 41 Fall 2020 41 / 102



Tower of Hanoi via Recursion
Algorithms Lecture 1: Recursion

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi problem to
two instances of the (n − 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the
Recursion Fairy (or, to carry the original story further, to the junior monks at the temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our algorithm does make one subtle but important assumption: there is a largest disk. In other
words, our recursive algorithm works for any n ≥ 1, but it breaks down when n = 0. We must
handle that base case directly. Fortunately, the monks at Benares, being good Buddhists, are quite
adept at moving zero disks from one needle to another.

The base case for the Tower of Hanoi algorithm; there is no bottom disk

While it’s tempting to think about how all those smaller disks get moved—in other words,
what happens when the recursion is unfolded—it’s not necessary. In fact, for more complicated
problems, opening up the recursion is a distraction. Our only task is to reduce the problem to one
or more simpler instances, or to solve the problem directly if such a reduction is impossible. Our
algorithm is trivially correct when n = 0. For any n ≥ 1, the Recursion Fairy correctly moves (or
more formally, the inductive hypothesis implies that our algorithm correctly moves) the top n − 1
disks, so our algorithm is clearly correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode.

HANOI(n, src, dst, tmp):
if n > 0

HANOI(n, src, tmp, dst)
move disk n from src to dst
HANOI(n, tmp, dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of our
algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive algorithm
implies that T (n) = 2T (n − 1) + 1 for any n ≥ 1. The annihilator method lets us quickly derive a
closed form solution T (n) = 2n − 1 . In particular, moving a tower of 64 disks requires 264 − 1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate of one move per
second, the monks at Benares will be at work for approximately 585 billion years before, with a
thunderclap, the world will vanish.

The Hanoi algorithm has two very simple non-recursive formulations, for those of us who do
not have an army of assistants to take care of smaller piles. Let’s label the needles 0, 1, and 2,

3

Har-Peled (UIUC) CS374 42 Fall 2020 42 / 102



Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then

Hanoi(n − 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n − 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n − 1) + 1 n > 1 and T (1) = 1

Har-Peled (UIUC) CS374 43 Fall 2020 43 / 102



Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then

Hanoi(n − 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n − 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n − 1) + 1 n > 1 and T (1) = 1

Har-Peled (UIUC) CS374 43 Fall 2020 43 / 102



Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then

Hanoi(n − 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n − 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n − 1) + 1 n > 1 and T (1) = 1

Har-Peled (UIUC) CS374 43 Fall 2020 43 / 102



Analysis

T (n) = 2T (n − 1) + 1
= 22T (n − 2) + 2 + 1
= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1
= . . .

= 2n−1T (1) + 2n−2 + . . . + 1
= 2n−1 + 2n−2 + . . . + 1
= (2n − 1)/(2− 1) = 2n − 1

Har-Peled (UIUC) CS374 44 Fall 2020 44 / 102



THE END
...

(for now)

Har-Peled (UIUC) CS374 45 Fall 2020 45 / 102


