Algorithms & Models of Computation CS/ECE 374, Fall 2020

9.4 Unrecognizable

Definition

Language \boldsymbol{L} is TM decidable if there exists \boldsymbol{M} that always stops, such that $\boldsymbol{L}(\boldsymbol{M}) = \boldsymbol{L}$.

Definition

Language L is TM recognizable if there exists M that stops on some inputs, such that L(M) = L.

Theorem (Halting)

 $\mathbf{A}_{\mathrm{TM}} = \Big\{ \langle \mathbf{M}, \mathbf{w}
angle \ | \ \mathbf{M} \ \text{is a TM} \ \text{and} \ \mathbf{M} \ \text{accepts} \ \mathbf{w} \Big\}$. is $\mathrm{TM} \ \text{recognizable}$, but not decidable.

Definition

Language ${f L}$ is ${f TM}$ <u>decidable</u> if there exists ${f M}$ that always stops, such that ${f L}({f M})={f L}$.

Definition

Language L is TM recognizable if there exists M that stops on some inputs, such that L(M) = L.

Theorem (Halting)

 $\mathbf{A}_{\mathrm{TM}} = \Big\{ \langle m{M}, m{w}
angle \ m{M} \ ext{is TM} \ ext{recognizable, but not}$ decidable.

Definition

Language ${f L}$ is ${f TM}$ <u>decidable</u> if there exists ${f M}$ that always stops, such that ${f L}({f M})={f L}$.

Definition

Language L is TM recognizable if there exists M that stops on some inputs, such that L(M) = L.

Theorem (Halting)

Lemma

If **L** and $\overline{\mathbf{L}} = \Sigma^* \setminus \mathbf{L}$ are both TM recognizable, then **L** and $\overline{\mathbf{L}}$ are decidable.

Proof.

M: TM recognizing L

 M_c : TM recognizing \overline{L} .

Given input x, using UTM simulating running M and M_c on x in parallel. One of them must stop and accept. Return result.

 \implies L is decidable.

Lemma

If **L** and $\overline{\mathbf{L}} = \Sigma^* \setminus \mathbf{L}$ are both TM recognizable, then **L** and $\overline{\mathbf{L}}$ are decidable.

Proof.

M: TM recognizing L.

 M_c : TM recognizing \overline{L} .

Given input x, using UTM simulating running M and M_c on x in parallel. One of them must stop and accept. Return result.

 \implies L is decidable.

Complement language for A_{TM}

$$\overline{\mathbf{A}_{\mathrm{TM}}} = \Sigma^* \setminus \left\{ \langle extbf{ extit{M}}, extbf{ extit{w}}
angle \ ig| extbf{ extit{M}} ext{ is a } \mathbf{TM} ext{ and } extbf{ extit{M}} ext{ accepts } extbf{ extit{w}}
ight\}.$$

But don't really care about invalid inputs. So, really:

$$\overline{\mathbf{A}_{\mathrm{TM}}} = \Big\{ \langle oldsymbol{M}, oldsymbol{w}
angle \ igwedge \ oldsymbol{M} \ ext{is a TM and } oldsymbol{M} \ ext{does not} \ ext{accept} \ oldsymbol{w} \Big\}$$
 .

Complement language for A_{TM}

$$\overline{\mathbf{A}_{\mathrm{TM}}} = \Sigma^* \setminus \left\{ \langle m{M}, m{w}
angle \; igg| \; m{M} \; ext{is a TM} \; ext{and} \; m{M} \; ext{accepts} \; m{w}
ight\}.$$

But don't really care about invalid inputs. So, really:

$$\overline{\mathbf{A}_{\mathrm{TM}}} = \left\{ \langle extbf{ extit{M}}, extbf{ extit{w}}
angle \; | \; extbf{ extit{M}} \; ext{is a TM} \; ext{and} \; extbf{ extit{M}} \; ext{does} \; extbf{not} \; ext{accept} \; extbf{ extit{w}}
ight\}.$$

Complement language for A_{TM} is not TM-recognizable

Theorem

The language

$$\overline{\mathbf{A}_{ extsf{TM}}} = \left\{ \langle m{ extit{M}}, m{ extbf{w}}
angle \ m{ extit{M}} \ ext{is a } \mathbf{T} \mathbf{M} \ ext{and} \ m{ extit{M}} \ ext{does} \ m{not} \ ext{accept} \ m{ extbf{w}}
ight\}.$$

is not TM recognizable.

Proof.

A_{TM} is TM-recognizable.

If $\overline{\mathbf{A}_{\mathrm{TM}}}$ is TM-recognizable

⇒ (by Lemma)

A_{TM} is decidable. A contradiction.

Complement language for A_{TM} is not TM-recognizable

Theorem

The language

$$\overline{\mathbf{A}_{ extsf{TM}}} = \left\{ \langle m{ extit{M}}, m{ extbf{w}}
angle \; m{ extit{M}} \; ext{is a TM} \; ext{and} \; m{ extit{M}} \; ext{does} \; m{ ext{not}} \; ext{accept} \; m{ extbf{w}}
ight\}.$$

is not TM recognizable.

Proof.

 $A_{\rm TM}$ is ${\rm TM}$ -recognizable.

If $\overline{\mathbf{A}_{\mathrm{TM}}}$ is TM -recognizable

⇒ (by Lemma

A_{TM} is decidable. A contradiction.

Complement language for A_{TM} is not TM-recognizable

Theorem

The language

$$\overline{\mathbf{A}_{ extsf{TM}}} = \left\{ \langle m{ extit{M}}, m{ extbf{w}}
angle \; m{ extit{M}} \; ext{is a TM} \; ext{and} \; m{ extit{M}} \; ext{does} \; m{ ext{not}} \; ext{accept} \; m{ extbf{w}}
ight\}.$$

is not TM recognizable.

Proof.

 $A_{\rm TM}$ is ${\rm TM}$ -recognizable.

If $\overline{\mathbf{A}_{\mathrm{TM}}}$ is TM -recognizable

 \implies (by Lemma)

A_{TM} is decidable. A contradiction.

THE END

...

(for now)