Algorithms & Models of Computation
CS/ECE 374, Fall 2020

9.3
The halting theorem
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M: Turing machine
(M): a binary string uniquely describing M (i.e., it is a number.
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M: Turing machine
(M): a binary string uniquely describing M (i.e., it is a number.
w: An input string.
(M, w): A unique binary string encoding both M and input w.

Ay = {(M, w) ‘ M is a TM and M accepts w} .
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Complexity classes

‘ Regular ‘

Context free grammar

Turing decidable

Turing recognizable

Not Turing recognizable.
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Atm is TM recognizable...

Ay = {(M, w) ‘ M is a TM and M accepts w} .

A\ is Turing recognizable. l
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Atm is TM recognizable...

Ay = {(M, w) ‘ M is a TM and M accepts w} .

A\ is Turing recognizable.

Input: (M, w).
Using UTM simulate running M on w. If M accepts w then accept, if M rejects then
reject. Otherwise, the simulation runs forever. [l
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Atm is not TM decidable!

Ay = {(M, w) ‘ M is a TM and M accepts w} .

Theorem (The halting theorem.)

A1\ is not Turing decidable.
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Atm is not TM decidable!

Ay = {(M, w) ‘ M is a TM and M accepts w} .

Theorem (The halting theorem.)

A1\ is not Turing decidable.

Proof: Assume A1y is TM decidable...
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Atm is not TM decidable!

Ay = {(M, w) ‘ M is a TM and M accepts w} .

Theorem (The halting theorem.)

A1\ is not Turing decidable.

Proof: Assume A1y is TM decidable...
Halt: TM deciding Ar)y;. Halt always halts, and works as follows:

accept M accepts w
Halt< (M, w)> — AP P
reject M does not accept w.
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Halting theorem proof continued 1

We build the following new function:
Flipper((M}))
res < Halt((M, M))
if res is accept then
reject

else

accept
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Halting theorem proof continued 1

We build the following new function:
Flipper((M}))
res < Halt((M, M))
if res is accept then
reject

else
accept

Flipper always stops:

Eli er( (M)) ) reject M accepts (M)
PP ~ ]accept M does not accept (M) .
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Halting theorem proof continued 2

Fli er( (M)) reject M accepts (M)
] =
PP accept M does not accept (M) .

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Run Flipper on
itself:

reject  Flipper accepts (Flipper)

FIipper( (FIipper)) = {

accept Flipper does not accept (Flipper) .
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Halting theorem proof continued 2

Fli er( (M)) reject M accepts (M)
] =
PP accept M does not accept (M) .

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Run Flipper on
itself:

reject  Flipper accepts (Flipper)

FIipper( (FIipper)) = {

accept Flipper does not accept (Flipper) .

This is absurd. Ridiculous even!
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Halting theorem proof continued 2

Fli er( (M)) reject M accepts (M)
] =
PP accept M does not accept (M) .

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Run Flipper on
itself:

reject  Flipper accepts (Flipper)
accept Flipper does not accept (Flipper) .

FIipper( (FIipper)) = {

This is absurd. Ridiculous even!
Assumption that Halt exists is false. == Ay is not T'M decidable. ]
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But where is the diagonalization argument????

| | (M) (Mg) <M3> <M4>

M | rej acc rej rej
M, | rej acc rej acc
Mjs | acc acc acc rej
My | rej acc acc rej
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THE END

(for now)




