Algorithms & Models of Computation CS/ECE 374, Fall 2020

7.4 Some properties of CFLs

Algorithms & Models of Computation CS/ECE 374, Fall 2020

7.4.1

Closure properties of CFLS

Bad news: Canonical non-CFL

Theorem

 $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for the proof.

More bad news: CFL not closed under intersection

Theorem

CFLs are not closed under intersection.

$$G_1 = (V_1, T, P_1, S_1) \text{ and } G_2 = (V_2, T, P_2, S_2)$$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L_1 , L_2 CFLs implies $L_1 \cup L_2$ is a CFL

Theorem

CFLs are closed under concatenation. L_1 , L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

Theorem

CFLs are closed under Kleene star.

If L is a CFL $\implies L^*$ is a CFL.

$$G_1 = (V_1, T, P_1, S_1) \text{ and } G_2 = (V_2, T, P_2, S_2)$$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L_1 , L_2 CFLs implies $L_1 \cup L_2$ is a CFL.

Theorem

CFLs are closed under concatenation. L_1 , L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

Theorem

CFLs are closed under Kleene star.

If **L** is a CFL \implies **L*** is a CFL.

31 / 63

Union

$$extbf{G}_1 = (extbf{V}_1, extbf{T}, extbf{P}_1, extbf{S}_1) ext{ and } extbf{G}_2 = (extbf{V}_2, extbf{T}, extbf{P}_2, extbf{S}_2)$$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared.

Theorem

CFLs are closed under union. L_1 , L_2 CFLs implies $L_1 \cup L_2$ is a CFL.

Concatenation

Theorem

CFLs are closed under concatenation. L_1 , L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

Stardom (i.e, Kleene star)

Theorem

CFLs are closed under Kleene star.

If **L** is a CFL \implies **L*** is a CFL.

Exercise

- Prove that every regular language is context-free using previous closure properties.
- ullet Prove the set of regular expressions over an alphabet Σ forms a non-regular language which is context-free.

Even more bad news: CFL not closed under complement

Theorem

CFLs are not closed under complement.

Good news: Closure Properties of CFLs continued

Theorem

If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.

THE END

...

(for now)