Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.5.2
Stating and proving the Myhill-Nerode

Theorem

Har-Peled (UIUC) Fall 2020 53/59

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

Har-Peled (UIUC) CS374 54 Fall 2020 54 /59

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

If = is finite with n equivalence classes then there is a fooling set F of size n for L.

Har-Peled (UIUC) CS374 54 Fall 2020 54 /59

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

If = is finite with n equivalence classes then there is a fooling set F of size n for L.

If =1 has infinite number of equivalence classes == 3 infinite fooling set for L.
== L is not regular.

Har-Peled (UIUC) CS374 54 Fall 2020 54 /59

Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

[x] = [y]

Har-Peled (UIUC) CS374 55 Fall 2020 55/59

Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

x| =[y] = Vwer xwel < ywelL

Har-Peled (UIUC) CS374 55 Fall 2020 55/59

Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

x| =[y] = Vwer xwel < ywelL
— Vw eX* xaw’' € L <= yaw' €L /] w=aw’

Har-Peled (UIUC) CS374 55 Fall 2020 55/59

Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

x| =[y] = Vwer xwel < ywelL
— Vw eX* xaw’' € L <= yaw' €L /] w=aw’
= [xa|. = [ya].. O

Har-Peled (UIUC) CS374 55 Fall 2020 55/59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.
Set of states: Q = [L]

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]
Start state: s = [¢],.

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]
Start state: s = [¢],.
Accept states: A = {[x]. | x € L}.

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]

Start state: s = [¢],.

Accept states: A = {[x]. | x € L}.
Transition function: &([x]., a) = [xa]..

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]

Start state: s = [¢],.

Accept states: A = {[x]. | x € L}.

Transition function: &([x]., a) = [xa]..

M= (Q,%,d,s,A): The resulting DFA.

Clearly, M is a DFA with n states, and it accepts L.]

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is regular <> =, has a finite number of equivalence classes.
If = is finite with n equivalence classes then there is a DFA M accepting L with
exactly n states and this is the minimum possible.

A language L is non-regular if and only if there is an infinite fooling set F for L. l

Algorithmic implication: For every DFA M one can find in polynomial time a DFA
M’ such that L(M) = L(M’) and M’ has the fewest possible states among all such
DFAs.

Har-Peled (UIUC) CS374 57 Fall 2020 57 /59

What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it
can be computed efficiently once any DFA is given for L.

Har-Peled (UIUC) CS374 58 Fall 2020 58 /59

Exercise

@ Given two DFAs My, M, describe an efficient algorithm to decide if
L(Ml) = L(Mz)-

@ Given DFA M, and two states g, @’ of M, show an efficient algorithm to decide if
q and q’ are distinguishable. (Hint: Use the first part.)

© Given a DFA M for a language L, describe an efficient algorithm for computing
the minimal automata (as far as the number of states) that accepts L.

Har-Peled (UIUC) CS374 59 Fall 2020 59 /59

