Algorithms & Models of Computation CS/ECE 374, Fall 2020

6.4

Closure properties: Proving non-regularity

 $H = \{ \text{bitstrings with equal number of 0s and 1s} \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$H' = H \cap L(0^*1^*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

 $H = \{ \text{bitstrings with equal number of 0s and 1s} \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$\mathbf{H'} = \mathbf{H} \cap \mathbf{L}(0^*1^*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

 $H = \{ \text{bitstrings with equal number of 0s and 1s} \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

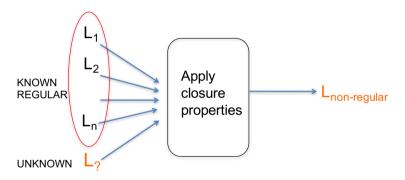
Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$H' = H \cap L(0*1*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

General recipe:



Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

THE END

...

(for now)