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6.3

Fooling sets: Proving non-regularity
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Fooling Sets

Definition

For a language L over ¥ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y € F are distinguishable.
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Fooling Sets

Definition

For a language L over ¥ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y € F are distinguishable.

Example: F = {0’ | i > 0} is a fooling set for the language L = {01k | kK > 0}.

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L
with less than |F| states.

Har-Peled (UIUC) CS374 24 Fall 2020 24 /59



Recall

Already proved the following lemma:

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € L* are distinguishable, then Vx # Vy.

Reminder: Vx = §*(s, x).
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Proof of theorem

Theorem (Reworded.)

L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let F = {wy, wy, ..., w,) be the fooling set.
Let M = (Q, %, d,s,A) be any DFA that accepts L.
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Proof of theorem

Theorem (Reworded.)

L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let F = {wy, wy, ..., w,) be the fooling set.

Let M = (Q, %, d,s,A) be any DFA that accepts L.
Let gi = Vw; = d*(s, x;).

By lemma q; # qj for all i # j.

As such, |@] 2 [{dtr- > @] = [{Wis- -, wir}| = |F]. s
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Infinite Fooling Sets
If L has an infinite fooling set F then L is not regular. \

Proof.

Let wy, wo, ... C F be an infinite sequence of strings such that every pair of them are

distinguishable.
Assume for contradiction that 3 M a DFA for L.
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Infinite Fooling Sets

If L has an infinite fooling set F then L is not regular. \

Proof.

Let wy, wo, ... C F be an infinite sequence of strings such that every pair of them are
distinguishable.

Assume for contradiction that 3 M a DFA for L.

Let F; = {wq,...,w;}.

By theorem, # states of M > |F;| = i, for all i.

As such, number of states in M is infinite.
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Infinite Fooling Sets

If L has an infinite fooling set F then L is not regular. \

Proof.

Let wy, wo, ... C F be an infinite sequence of strings such that every pair of them are
distinguishable.

Assume for contradiction that 3 M a DFA for L.

Let F; = {wq,...,w;}.

By theorem, # states of M > |F;| = i, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic f| n |te automata. But M not finite. (]
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o {01k | k >0}
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o {01k | k >0}
o {bitstrings with equal number of Os and 1s}
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o {01k | k >0}
o {bitstrings with equal number of Os and 1s}
o {0kK1* | k # £}
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Harder example: The language of squares is not regular

{0¥ | k >0}
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Really hard: Primes are not regular

An exercise left for your enjoyment

{0" | k is a prime number}
Hints:
© Probably easier to prove directly on the automata.
© There are infinite number of prime numbers.
© For every n > 0, observe that n!,n! +1,...,n! + n are all composite — there are
arbitrarily big gaps between prime numbers.
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THE END

(for now)




