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5.1
Equivalence of NFAs and DFAs
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Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \
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Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

e DFAs are special cases of NFAs (easy)

@ NFAs accept regular expressions (seen)

@ DFAs accept languages accepted by NFAs (shortly)

@ Regular expressions for languages accepted by DFAs (later in the course)
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Equivalence of NFAs and DFAs

For every NFA N there is a DFA M such that L(M) = L(N).
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Algorithms & Models of Computation
CS/ECE 374, Fall 2020

5.1.1
The idea of the conversion of NFA to
DFA
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DFAs are memoryless...

@ DFA knows only its current state.
© The state is the memory.

© To design a DFA, answer the question:
What minimal info needed to solve problem.
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Simulating NFA

Example the first revisited

(N1) A

Previous lecture.. Ran NFA
on input ababa.

a,b
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The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.
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The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.

configuration: A set of states the automata might be in.
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The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.

configuration: A set of states the automata might be in.
Possible configurations: 0, {A}, {A, B}...
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The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.

configuration: A set of states the automata might be in.
Possible configurations: 0, {A}, {A, B}...
Big idea: Build a DFA on the configurations.
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Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate NFA N on input w.
@ What does it need to store after seeing a prefix x of w?
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Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate NFA N on input w.
@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N could be in after
reading x

@ Is it sufficient?
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Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate NFA N on input w.
@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N could be in after
reading x

o Is it sufficient? Yes, if it can compute d*(s, xa) after seeing another symbol a in
the input.

@ When should the program accept a string w?
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Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate NFA N on input w.
@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N could be in after
reading x

o Is it sufficient? Yes, if it can compute d*(s, xa) after seeing another symbol a in
the input.

@ When should the program accept a string w? If §*(s,w) N A # 0.
Key Observation: DFA M simulating N should know current configuration of N.

State space of the DFA is P(Q).

Har-Peled (UIUC) CS374 10 Fall 2020 10 /42



Example: DFA from NFA
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Formal Tuple Notation for NFA

A non-deterministic finite automata (NFA) N = (Q, %, d, s, A) is a five tuple where
@ @ is a finite set whose elements are called states,

@ X is a finite set called the input alphabet,

0 6:Q XxXU({e} — P(Q) is the transition function (here P(Q) is the power set
of Q),

@ s € Q is the start state,

@ A C @ is the set of accepting/final states.

d(q,a) for a € ¥ U {e€} is a subset of Q — a set of states.
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THE END

(for now)




