Algorithms & Models of Computation
CS/ECE 374, Fall 2020

NFAs continued, Closure Properties
of Regular Languages

Lecture 5
Tuesday, September 8, 2020

ATEXed: July 23, 2020 13:41

Fall 2020 1/42

Har-Peled (UIUC)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

5.1
Equivalence of NFAs and DFAs

Har-Peled (UIUC) Fall 2020 2/42

Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

Har-Peled (UIUC) CS374 3 Fall 2020 3/42

Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

e DFAs are special cases of NFAs (easy)

@ NFAs accept regular expressions (seen)

@ DFAs accept languages accepted by NFAs (shortly)

@ Regular expressions for languages accepted by DFAs (later in the course)

Har-Peled (UIUC) CS374 8 Fall 2020 3/42

Equivalence of NFAs and DFAs

For every NFA N there is a DFA M such that L(M) = L(N).

Har-Peled (UIUC) CS374 4 Fall 2020 4/42

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

5.1.1
The idea of the conversion of NFA to
DFA

Har-Peled (UIUC) Fall 2020 5/42

DFAs are memoryless...

@ DFA knows only its current state.
© The state is the memory.

© To design a DFA, answer the question:
What minimal info needed to solve problem.

Har-Peled (UIUC) CS374 6 Fall 2020 6/42

Simulating NFA

Example the first revisited

(N1) A

Previous lecture.. Ran NFA
on input ababa.

a,b

Har-Peled (UIUC)

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.

Har-Peled (UIUC) Fall 2020 8/42

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.

configuration: A set of states the automata might be in.

Har-Peled (UIUC) Fall 2020 8/42

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.

configuration: A set of states the automata might be in.
Possible configurations: 0, {A}, {A, B}...

Har-Peled (UIUC) Fall 2020 8/42

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.

configuration: A set of states the automata might be in.
Possible configurations: 0, {A}, {A, B}...
Big idea: Build a DFA on the configurations.

Har-Peled (UIUC) CS374 8 Fall 2020 8/42

Har-Peled (UIUC) Fall 2020 9/42

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate NFA N on input w.
@ What does it need to store after seeing a prefix x of w?

Har-Peled (UIUC) CS374 10 Fall 2020 10/ 42

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate NFA N on input w.
@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N could be in after
reading x

@ Is it sufficient?

Har-Peled (UIUC) CS374 10 Fall 2020 10/ 42

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate NFA N on input w.
@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N could be in after
reading x

o Is it sufficient? Yes, if it can compute d*(s, xa) after seeing another symbol a in
the input.

@ When should the program accept a string w?

Har-Peled (UIUC) CS374 10 Fall 2020 10 /42

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate NFA N on input w.
@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N could be in after
reading x

o Is it sufficient? Yes, if it can compute d*(s, xa) after seeing another symbol a in
the input.

@ When should the program accept a string w? If §*(s,w) N A # 0.
Key Observation: DFA M simulating N should know current configuration of N.

State space of the DFA is P(Q).

Har-Peled (UIUC) CS374 10 Fall 2020 10 /42

Example: DFA from NFA

Har-Peled (UIUC) Fall 2020 11/42

Formal Tuple Notation for NFA

A non-deterministic finite automata (NFA) N = (Q, %, d, s, A) is a five tuple where
@ @ is a finite set whose elements are called states,

@ X is a finite set called the input alphabet,

0 6:Q XxXU({e} — P(Q) is the transition function (here P(Q) is the power set
of Q),

@ s € Q is the start state,

@ A C @ is the set of accepting/final states.

d(q,a) for a € ¥ U {e€} is a subset of Q — a set of states.

Har-Peled (UIUC) CS374 12 Fall 2020 12 /42

THE END

(for now)

