Algorithms & Models of Computation

CS/ECE 374, Fall 2020

4.1.2

- ② $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- $ext{ } ext{ } ext$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

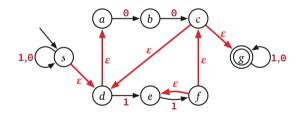
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- ullet Want transition function $\delta^*: Q imes \Sigma^* o \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

- \bullet $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- **③** Want transition function $\delta^*: Q imes \Sigma^* o \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

- \bullet $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- lacktriangledown Want transition function $\delta^*: Q imes \Sigma^* o \mathcal{P}(Q)$
- \bullet $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Definition

For NFA $N=(Q,\Sigma,\delta,s,A)$ and $q\in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

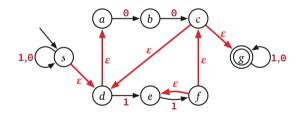


Definition

For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x).

Definition

For NFA $N=(Q,\Sigma,\delta,s,A)$ and $q\in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.



Definition

For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x).

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: \mathbf{Q} \times \Sigma^* \to \mathcal{P}(\mathbf{Q})$:

- ullet if $oldsymbol{w}=arepsilon$, $oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{w})=\epsilon$ reach $(oldsymbol{q})$
- ullet if w=a where $a\in \Sigma$: $\delta^*(q,a)=\epsilon$ reach $\left(igcup_{oldsymbol{p}\in\epsilon$ reach $(q)}\delta(oldsymbol{p},a)
 ight)$
- if w = ax: $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- ullet if $oldsymbol{w}=oldsymbol{arepsilon},\, oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{w})=\epsilon$ reach $(oldsymbol{q})$
- ullet if w=a where $a\in \Sigma$: $\delta^*(q,a)=\epsilon$ reach $\left(igcup_{m{p}\in\epsilon ext{reach}(m{q})}\delta(m{p},a)
 ight)$

• if
$$w = ax$$
: $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: \mathbf{Q} \times \Sigma^* \to \mathcal{P}(\mathbf{Q})$:

- ullet if $oldsymbol{w}=oldsymbol{arepsilon},\, oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{w})=\epsilon$ reach $(oldsymbol{q})$
- ullet if w=a where $a\in \Sigma$: $\delta^*(q,a)=\epsilon$ reach $\left(igcup_{m{p}\in\epsilon ext{reach}(m{q})}\delta(m{p},a)
 ight)$
- ullet if w=ax: $\delta^*(q,w)=\epsilon \operatorname{reach}\left(igcup_{p\in\epsilon\operatorname{reach}(q)}\left(igcup_{r\in\delta^*(p,a)}\delta^*(r,x)
 ight)
 ight)$

$$\delta^*(q,w) = \epsilon$$
reach $\left(igcup_{p \in \epsilon ext{reach}(q)} \left(igcup_{r \in \delta^*(p,a)} \delta^*(r,x)
ight)
ight)$

- ② $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\delta^*(oldsymbol{q},w)=\epsilon$ reach $\left(igcup_{r\in N}\delta^*(r,x)
 ight)$

$$\delta^*(q,w) = \epsilon \mathsf{reach}\left(igcup_{p \in \epsilon \mathsf{reach}(q)} \left(igcup_{r \in \delta^*(p,a)} \delta^*(r,x)
ight)
ight)$$

- $\bullet \ \ R = \epsilon \mathrm{reach}(q) \implies \delta^*(q,w) = \epsilon \mathrm{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p,a)} \delta^*(r,x)\right)$
- ② $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\delta^*(q,w) = \epsilon \operatorname{reach}\left(igcup_{r\in N} \delta^*(r,x)
 ight)$

$$\delta^*(q,w) = \epsilon$$
reach $\left(igcup_{p \in \epsilon ext{reach}(q)} \left(igcup_{r \in \delta^*(p,a)} \delta^*(r,x)
ight)
ight)$

- ② $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\delta^*(q,w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^*(r,x)\right)$

$$\delta^*(q,w) = \epsilon \mathsf{reach}\left(igcup_{p \in \epsilon \mathsf{reach}(q)} \left(igcup_{r \in \delta^*(p,a)} \delta^*(r,x)
ight)
ight)$$

- $\bullet \ R = \epsilon \mathrm{reach}(q) \implies \delta^*(q,w) = \epsilon \mathrm{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p,a)} \delta^*(r,x)\right)$
- $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\delta^*(oldsymbol{q},oldsymbol{w}) = \epsilon {\sf reach}\Biggl(igcup_{oldsymbol{r}\inoldsymbol{N}} \delta^*(oldsymbol{r},x)\Biggr)$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N=(Q,\Sigma,\delta,s,A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

Formal definition of language accepted by N

Definition

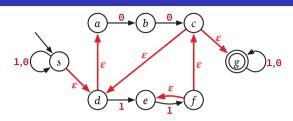
A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

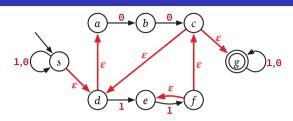
The language L(N) accepted by a NFA $N=(Q,\Sigma,\delta,s,A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

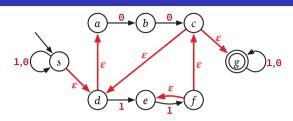
Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.



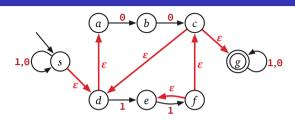
- ullet $\delta^*(s,\epsilon)$
- \bullet $\delta^*(s,0)$
- $\delta^*(c,0)$
- $\delta^*(b, 00)$



- ullet $\delta^*(s,\epsilon)$
- \bullet $\delta^*(s,0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$



- ullet $\delta^*(s,\epsilon)$
- \bullet $\delta^*(s,0)$
- $\delta^*(c,0)$
- $\bullet \ \delta^*(b,00)$



- ullet $\delta^*(s,\epsilon)$
- \bullet $\delta^*(s,0)$
- $\delta^*(c,0)$
- $\delta^*(b,00)$

Another definition of computation

Definition

 $q \xrightarrow{w}_{N} p$: State p of NFA N is <u>reachable</u> from q on $w \iff$ there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\varepsilon\}$, for each i, such that:

- $r_0 = q$,
- for each i, $r_{i+1} \in \delta^*(r_i, x_{i+1})$,
- \bullet $r_k = p$, and
- $\bullet \ \mathbf{w} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \mathbf{x}_k.$

Definition

$$\delta_{N}^{*}(q, w) = \left\{ p \in Q \mid q \xrightarrow{w}_{N} p \right\}.$$

25

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in **theory** to prove many theorems
- Very important in **practice** directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

THE END

...

(for now)