Algorithms & Models of Computation CS/ECE 374, Fall 2020

3.1.2

Formal definition of DFA

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

Σ is a finite set called the input alphabet,

ullet $\delta: Q imes \Sigma o Q$ is the transition function

ullet $s\in Q$ is the start state,

ullet $A\subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- \bullet Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- \bullet Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- \bullet Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- \bullet Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- \bullet Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- \bullet Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- \bullet Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

DFA Notation

$$M = \left(egin{array}{cccc} oldsymbol{Q} & oldsymbol{,} oldsymbol{\Sigma} & oldsymbol{\delta} & oldsymbol{,} oldsymbol{S} & oldsymbol{\delta} & oldsymbol{,} oldsymbol{S} & oldsymbol{A} & oldsymbo$$

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- 6
- $s = q_0$
- $A = \{q_0\}$

- $ullet Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- 8
- $s = q_0$
- $A = \{q_0\}$

- $ullet Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- 6
- $s = q_0$
- $A = \{q_0\}$

- $ullet Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- 6
- $s = q_0$
- $A = \{q_0\}$

- $ullet Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$

- $extbf{Q} = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- \bullet δ
- $s = q_0$
- $A = \{q_0\}$

- $extbf{Q} = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- \bullet δ
- $s = q_0$
- $A = \{q_0\}$

- $ullet Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- \bullet δ
- $s = q_0$
- $A = \{q_0\}$

- $ullet Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- \bullet δ
- $s = q_0$
- $A = \{q_0\}$

Example: The transition function

state	input	result
q	C	$\delta(q,c)$
Q	Σ	Σ
$\overline{m{q}_0}$	0	q_3
$oldsymbol{q}_0 \ oldsymbol{q}_0$	1	$oldsymbol{q}_1$
$oldsymbol{q}_1$	0	\boldsymbol{q}_0
$oldsymbol{q}_1$	1	\boldsymbol{q}_2
\boldsymbol{q}_2	0	\boldsymbol{q}_2
$oldsymbol{q}_2 \ oldsymbol{q}_2$	1	$egin{pmatrix} oldsymbol{q}_2 \ oldsymbol{q}_2 \end{array}$
$egin{array}{c} oldsymbol{q}_3 \ oldsymbol{q}_3 \end{array}$	0	$egin{pmatrix} oldsymbol{q}_2 \ oldsymbol{q}_0 \end{matrix}$
\boldsymbol{q}_3	1	\boldsymbol{q}_0

18 / 58

THE END

...

(for now)