Algorithms & Models of Computation

CS/ECE 374, Fall 2020

Deterministic Finite Automata (DFAs)

Lecture 3
Tuesday, September 1, 2020

LATEXed: July 24, 2020 22:22

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

3.1 DFA Introduction

DFAs also called Finite State Machines (FSMs)

- The "simplest" model for computers?
- State machines that are common in practice.
 - Vending machines
 - Elevators
 - Digital watches
 - Simple network protocols
- Programs with fixed memory

A simple program

Program to check if a given input string w has odd length

```
int \mathbf{n} = 0
While input is not finished read next character \mathbf{c}
\mathbf{n} \leftarrow \mathbf{n} + 1
endWhile
If (\mathbf{n} \text{ is odd}) output YES
Else output NO
```

```
bit x = 0
While input is not finished read next character c
x \leftarrow \text{flip}(x)
endWhile
If (x = 1) output YES
Else output NO
```

A simple program

Program to check if a given input string w has odd length

```
int n = 0
While input is not finished read next character c
n \leftarrow n + 1
endWhile
If (n \text{ is odd}) output YES
Else output NO
```

```
bit \mathbf{x} = 0
While input is not finished read next character \mathbf{c}
\mathbf{x} \leftarrow \text{flip}(\mathbf{x})
endWhile
If (\mathbf{x} = 1) output YES
Else output NO
```

Another view

- Machine has input written on a <u>read-only</u> tape
- Start in specified start state
- Start at left, scan symbol, change state and move right
- Circled states are accepting
- Machine <u>accepts</u> input string if it is in an accepting state after scanning the last symbol.

Har-Peled (UIUC) CS374 5 Fall 2020 5/58

Draw me a sheep DFA

DFA to check if a given input string has odd length

THE END

...

(for now)