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Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition
The reverse wR of a string w is defined as follows:

wR = ε if w = ε

wR = xRa if w = ax for some a ∈ Σ and string x

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Example: (dog·cat)R = (cat)R·(dog)R = tacgod .
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Principle of mathematical induction

Induction is a way to prove statements of the form ∀n ≥ 0,P(n) where P(n) is a
statement that holds for integer n.

Example: Prove that
∑n

i=0 i = n(n + 1)/2 for all n.

Induction template:

Base case: Prove P(0)

Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n)
holds for any n ≤ k .

Induction Step: Prove that P(n) holds, for n = k + 1.
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Structured induction

1 Unlike simple cases we are working with...

2 ...induction proofs also work for more complicated “structures”.

3 Such as strings, tuples of strings, graphs etc.

4 See class notes on induction for details.
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Proving the theorem

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof: by induction.
On what?? |uv | = |u| + |v |?
|u|?
|v |?

What does it mean “induction on |u|”?
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1.3.1: Three proofs by induction
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1.3.1.1:Induction on |u|
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By induction on |u|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| means that we are proving the following.
Base case: Let u be an arbitrary string of length 0. u = ε since there is only one such
string. Then
(uv)R = (εv)R = vR = vRε = vRεR = vRuR

Induction hypothesis: ∀n ≥ 0, for any string u of length n:
For all strings v ∈ Σ∗, (uv)R = vRuR .

No assumption about v , hence statement holds for all v ∈ Σ∗.
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Inductive step

Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.
Since |u| = n > 0 we have u = ay for some string y with |y | < n and a ∈ Σ.
Then

(uv)R = ((ay)v)R

= (a(yv))R

= (yv)RaR

= (vRyR)aR

= vR(yRaR)

= vR(ay)R

= vRuR
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1.3.1.2:A failed attempt: Induction on |v |
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Induction on |v|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR .

Base case: Let v be an arbitrary string of length 0. v = ε since there is only one such
string. Then

(uv)R = (uε)R = uR = εuR = εRuR = vRuR

Har-Peled (UIUC) CS374 36 Fall 2020 36 / 56



Induction on |v|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR .

Base case: Let v be an arbitrary string of length 0. v = ε since there is only one such
string. Then

(uv)R = (uε)R = uR = εuR = εRuR = vRuR

Har-Peled (UIUC) CS374 36 Fall 2020 36 / 56



Induction on |v|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR .

Base case: Let v be an arbitrary string of length 0. v = ε since there is only one such
string. Then

(uv)R = (uε)R = uR = εuR = εRuR = vRuR

Har-Peled (UIUC) CS374 36 Fall 2020 36 / 56



Inductive step

Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

Since |v | = n > 0 we have v = ay for some string y with |y | < n and a ∈ Σ.

Then

(uv)R = (u(ay))R

= ((ua)y)R

= yR(ua)R

= ??

Cannot simplify (ua)R using inductive hypothesis. Can simplify if we extend base case
to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!
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1.3.1.3:Induction on |u| + |v |
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Induction on |u| + |v|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| + |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any u, v ∈ Σ∗ with |u| + |v | ≤ n,
(uv)R = vRuR .

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v | = 0. Implies
u, v = ε.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v | = n.
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THE END
...

(for now)
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