Algorithms & Models of Computation CS/ECE 374, Fall 2020

1.3 Inductive proofs on strings

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^R of a string w is defined as follows:

- $w^R = \epsilon$ if $w = \epsilon$
- $w^R = x^R a$ if w = ax for some $a \in \Sigma$ and string x

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Example: $(dog \bullet cat)^R = (cat)^R \bullet (dog)^R = tacgod$.

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^R of a string w is defined as follows:

- $w^R = \epsilon$ if $w = \epsilon$
- $w^R = x^R a$ if w = ax for some $a \in \Sigma$ and string x

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Example: $(dog \bullet cat)^R = (cat)^R \bullet (dog)^R = tacgod$.

Principle of mathematical induction

Induction is a way to prove statements of the form $\forall n \geq 0, P(n)$ where P(n) is a statement that holds for integer n.

Example: Prove that $\sum_{i=0}^{n} i = n(n+1)/2$ for all n.

Induction template:

- Base case: Prove P(0)
- Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n) holds for any $n \le k$.
- Induction Step: Prove that P(n) holds, for n = k + 1.

Structured induction

- Unlike simple cases we are working with...
- 2 ...induction proofs also work for more complicated "structures".
- Such as strings, tuples of strings, graphs etc.
- See class notes on induction for details.

Proving the theorem

Theorem.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

```
Proof: by induction. On what?? |uv| = |u| + |v|? |u|?
```

|**v**|?

What does it mean "induction on |u|"?

30

1.3.1: Three proofs by induction

1.3.1.1:Induction on |u|

By induction on u

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following.

Base case: Let u be an arbitrary string of length 0. $u=\epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Induction hypothesis: $\forall n \geq 0$, for any string u of length n:

For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about ν , hence statement holds for all $\nu \in \Sigma^*$.

By induction on |u|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following.

Base case: Let u be an arbitrary string of length 0. $u=\epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Induction hypothesis: $\forall n \geq 0$, for any string u of length n:

For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about ν , hence statement holds for all $\nu \in \Sigma^*$.

By induction on |u|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following.

Base case: Let u be an arbitrary string of length 0. $u = \epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Induction hypothesis: $\forall n \geq 0$, for any string u of length n:

For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about ν , hence statement holds for all $\nu \in \Sigma^*$.

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

1.3.1.2: A failed attempt: Induction on |v|

Har-Peled (UIUC) CS374 35 Fall 2020 35 / 56

Induction on |v|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any string v of length n:

For all strings
$$u \in \Sigma^*$$
, $(uv)^R = v^R u^R$.

Base case: Let v be an arbitrary string of length 0. $v = \epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

Induction on |v|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any string \mathbf{v} of length \mathbf{n} :

For all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$.

Base case: Let v be an arbitrary string of length 0. $v = \epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

Induction on |v|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any string \mathbf{v} of length \mathbf{n} :

For all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$.

Base case: Let v be an arbitrary string of length 0. $v = \epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = (u(ay))^{R}$$

$$= ((ua)y)^{R}$$

$$= y^{R}(ua)^{R}$$

$$= ??$$

Cannot simplify $(ua)^R$ using inductive hypothesis. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

Har-Peled (UIUC) CS374 37 Fall 2020 37 / 56

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = (u(ay))^{R}$$

$$= ((ua)y)^{R}$$

$$= y^{R}(ua)^{R}$$

$$= ??$$

Cannot simplify $(ua)^R$ using inductive hypothesis. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

Har-Peled (UIUC) CS374 37 Fall 2020 37 / 56

1.3.1.3:Induction on |u| + |v|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. **Induction hypothesis:** $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. **Induction hypothesis:** $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. **Induction hypothesis:** $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. **Induction hypothesis:** $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

THE END

...

(for now)