1. Suppose you are given a pair of arrays $\text{Ramp}[1..n]$ and $\text{Length}[1..n]$, where $\text{Ramp}[i]$ is the distance from the top of the hill to the ith ramp, and $\text{Length}[i]$ is the distance that any sledder who takes the ith ramp will travel through the air.

Describe and analyze an algorithm to determine the maximum total distance that Erhan or Nancy can travel through the air.

Solution: To simplify boundary cases, we add a sentinel value $\text{Ramp}[n + 1] = \infty$. (Intuitively, we add a “ramp” at the bottom of the hill, well beyond the end of any possible jump, and then end the race when Nancy and Erhan reach this ramp.)

For any index i, let $\text{Next}(i)$ denote the smallest index j such that $\text{Ramp}[j] > \text{Ramp}[i] + \text{Length}[i]$. Because the array Ramp is sorted, we can compute $\text{Next}(i)$ for any index i in $O(\log n)$ time using binary search.

Now let $\text{MaxAir}(i)$ denote the maximum distance that one sledder can spend in the air, starting on the ground at the ith ramp. We need to compute $\text{MaxAir}(1)$. This function satisfies the following recurrence:

$$\text{MaxAir}(i) = \begin{cases} 0 & \text{if } i > n \\ \max \left\{ \text{MaxAir}(i + 1), \text{Length}[i] + \text{MaxAir}(\text{Next}(i)) \right\} & \text{otherwise} \end{cases}$$

We can memoize this function into an a one-dimensional array $\text{MaxAir}[1..n + 1]$, which we can fill from right to left.

```
MaxAir(\text{Ramp}[1..n], \text{Length}[1..n]):
  \text{Ramp}[n + 1] \leftarrow \infty \quad ((\text{sentinel}))
  \text{MaxAir}[n + 1] \leftarrow 0 \quad ((\text{base case}))
  \text{for } i \leftarrow n \text{ down to } 1
    \text{next} \leftarrow \text{BinarySearch}(\text{Ramp}, \text{Ramp}[i] + \text{Length}[i])
    \text{MaxAir}[i] \leftarrow \max\{\text{MaxAir}[i + 1], \text{Length}[i] + \text{MaxAir}[\text{next}]\}
  \text{return MaxAir[1]}
```

Because of the binary search for $\text{Next}(i)$ (here stored in the variable next), the algorithm runs in $O(n \log n)$ time.

■
2. Uh-oh. The university lawyers heard about Nancy and Erhan’s little bet and immediately objected. To protect the university from both lawsuits and sky-rocketing insurance rates, they impose an upper bound on the number of jumps that either sledder can take.

Describe and analyze an algorithm to determine the maximum total distance that Nancy or Erhan can spend in the air with at most \(k \) jumps, given the original arrays \(\text{Ramp}[1..n] \) and \(\text{Length}[1..n] \) and the integer \(k \) as input.

Solution: As in the previous problem, add a sentinel ramp \(\text{Ramp}[n + 1] = \infty \), and for any index \(i \), let \(\text{Next}(i) \) denote the smallest index \(j \) such that \(\text{Ramp}[j] > \text{Ramp}[i] + \text{Length}[i] \).

Now let \(\text{MaxAir}(i, \ell) \) denote the maximum distance any sledder can spend in the air, starting on the ground at the \(i \)th ramp, using at most \(\ell \) jumps. We need to compute \(\text{MaxAir}(1, k) \). This function obeys the following recurrence:

\[
\text{MaxAir}(i, \ell) = \begin{cases}
0 & \text{if } i > n \text{ or } \ell = 0 \\
\max \{ \text{MaxAir}(i + 1, \ell), \text{Length}[i] + \text{MaxAir}(\text{Next}(i), \ell - 1) \} & \text{otherwise}
\end{cases}
\]

We can memoize this function into a two-dimensional array \(\text{MaxAir}[1..n+1, 0..k] \), which we can fill by considering rows from bottom to top in the outer loop and filling each row in arbitrary order in the inner loop.

```plaintext
\text{MaxAir}(\text{Ramp}[1..n], \text{Length}[1..n], k):
Ramp[n + 1] ← \infty
for \( \ell \) ← 0 to \( k \):
    \text{MaxAir}[n + 1, \ell] ← 0
for \( i \) ← \( n \) down to 1:
    \text{next} ← \text{BinarySearch}(\text{Ramp}, \text{Ramp}[i] + \text{Length}[i])
    \text{MaxAir}[i, 0] ← 0
for \( \ell \) ← 1 to \( k \):
    \text{MaxAir}[i, \ell] ← \max\{\text{MaxAir}[i + 1, \ell], \text{Length}[i] + \text{MaxAir}[\text{next}, \ell - 1]\}
return \text{MaxAir}[1, k]
```

Because we perform the binary search for \(\text{Next}(i) \) outside the inner loop, the algorithm runs in \(O(n \log n + nk) \) time.
Harder problem to think about later:

3. When the lawyers realized that imposing their restriction didn’t immediately shut down the contest, they added yet another restriction: No ramp may be used more than once! Disgusted by all the legal interference, Erhan and Nancy give up on their bet and decide to cooperate to put on a good show for the spectators.

Describe and analyze an algorithm to determine the maximum total distance that Nancy and Erhan can spend in the air, each taking at most k jumps (so at most $2k$ jumps total), and with each ramp used at most once.

Solution: Again, we add a sentinel ramp $Ramp[n + 1] = \infty$, and for any index i, we let $Next(i)$ denote the smallest index j such that $Ramp[j] > Ramp[i] + Length[i]$.

To design a recurrence, let’s consider what could happen at the ith ramp. There are four possibilities:

- If Erhan and Nancy are both on the ground at ramp i, we need to decide whether Erhan should jump at ramp i, or Nancy should jump at ramp i, or neither should jump at ramp i.
- If Erhan jumps over ramp i but Nancy does not, we need to decide whether Nancy should jump at ramp i.
- If Nancy jumps over ramp i but Erhan does not, we need to decide whether Erhan should jump at ramp i.
- If both Erhan and Nancy jump over ramp i, there is nothing to decide about ramp i.

Let $MaxAir2(i, j, \ell, m)$ denote the maximum time that Nancy and Erhan can spend in the air under the following conditions.

- If $i = j$, then both sledders are on the ground at ramp i. In this case, at most one of the sledders can jump at ramp i; any sledder that does not jump sleds down to ramp $i + 1$.
- If $i < j$, then Erhan is on the ground at ramp i, and Nancy is jumping over ramp i and will land just before ramp j. In this case, Erhan can either jump at ramp i or sled down to ramp $i + 1$.
- If $i > j$, then Nancy is on the ground at ramp j, and Erhan is jumping over ramp j and will land just before ramp i. In this case, Nancy can either jump at ramp j or sled down to ramp $j + 1$.
- Erhan has ℓ jumps remaining, and Nancy has m jumps remaining.

In the second and third cases, the airtime for the sledder in the air is not included in the total. We handle the case where both sledders are in the air over ramp i by moving down the hill to the first landing. (Whew!)
Formalizing our case analysis gives us the following recurrence:

\[
\text{MaxAir}_2(i, j, \ell, m) =
\begin{cases}
-\infty & \text{if } \ell < 0 \text{ or } m < 0 \\
0 & \text{if } i > n \text{ and } j > n \\
\max \left\{ \begin{array}{l}
\text{MaxAir}_2(i + 1, i + 1, \ell, m) \\
\text{Length}[i] + \text{MaxAir}_2(\text{Next}(i), i + 1, \ell - 1, m) \\
\text{Length}[i] + \text{MaxAir}_2(i + 1, \text{Next}(i), \ell, m - 1) \\
\end{array} \right. & \text{if } i = j \leq n \\
\max \left\{ \begin{array}{l}
\text{MaxAir}_2(i + 1, j, \ell, m) \\
\text{Length}[i] + \text{MaxAir}_2(\text{Next}(i), j, \ell - 1, m) \\
\end{array} \right. & \text{if } i < j \\
\max \left\{ \begin{array}{l}
\text{MaxAir}_2(i, j + 1, \ell, m) \\
\text{Length}[j] + \text{MaxAir}_2(i, \text{Next}(j), \ell - 1, m) \\
\end{array} \right. & \text{if } i > j
\end{cases}
\]

We can memoize this function into a four-dimensional array \(\text{Air}[1..n+1, 1..n+1, -1..k, -1..k]\). Each entry \(\text{Air}[i, j, \ell, m]\) depends only on entries \(\text{Air}[i', j', \ell', m']\) where either \(i' > i\), or \(i' = i\) and \(j' > i\). Thus, we can fill the array by decreasing \(i\) in the outermost loop, decreasing \(j\) in the next loop, and considering \(\ell\) and \(m\) in arbitrary order in the inner two loops. To speed up evaluation, we precompute all values of \(\text{Next}(i)\) at the start. The resulting algorithm runs in \(O(n^2 k^2)\) time.

```plaintext
MaxAir2(Ramp[1..n], Length[1..n], k):
Ramp[n + 1] ← ∞
Length[n + 1] ← 0
for i ← 1 to n
    Next[i] ← BINARYSEARCH(Ramp, Ramp[i] + Length[i])
for i ← n + 1 down to 1
    for j ← n + 1 down to 1
        for ℓ ← 1 to k
            for m ← 1 to k
                if ℓ < 0 or m < 0
                    Air[i, j, ℓ, m] ← −∞
                else if i = n + 1 and j = n + 1
                    Air[i, j, ℓ, m] ← 0
                else if i = j
                    Air[i, i, ℓ, m] ← max(Length[i] + Air[Next[i], i + 1, ℓ - 1, m], Length[i] + Air[i + 1, Next[i], ℓ, m - 1])
                else if i < j
                    Air[i, j, ℓ, m] ← max(Air[i + 1, j, ℓ, m], Length[i] + Air[Next[i], j, ℓ - 1, m])
                else if i > j
                    Air[i, j, ℓ, m] ← max(Air[i, j + 1, ℓ, m], Length[i] + Air[i, Next[j], ℓ, m - 1])
return Air[1, 1, k, k]
```