Describe recursive backtracking algorithms for the following longest-subsequence problems. Don’t worry about running times.

1. Given an array \(A[1..n] \) of integers, compute the length of a longest increasing subsequence.

Solution (#1 of \(\infty \)): Add a sentinel value \(A[0] = -\infty \). Let \(LIS(i, j) \) denote the length of the longest increasing subsequence of the suffix \(A[j..n] \) where every element is larger than \(A[i] \). This function obeys the following recurrence:

\[
LIS(i, j) = \begin{cases}
0 & \text{if } j > n \\
LIS(i, j + 1) & \text{if } j \leq n \text{ and } A[i] \geq A[j] \\
\max \{LIS(i, j + 1), 1 + LIS(j, j + 1)\} & \text{otherwise}
\end{cases}
\]

We need to compute \(LIS(0, 1) \).

Solution (#2 of \(\infty \)): Add a sentinel value \(A[n + 1] = \infty \). Let \(LIS(i, j) \) denote the length of the longest increasing subsequence of the prefix \(A[1..j] \) where every element is smaller than \(A[j] \). This function obeys the following recurrence:

\[
LIS(i, j) = \begin{cases}
0 & \text{if } i < 1 \\
LIS(i - 1, j) & \text{if } i \geq 1 \text{ and } A[i] \geq A[j] \\
\max \{LIS(i - 1, j), 1 + LIS(i - 1, i)\} & \text{otherwise}
\end{cases}
\]

We need to compute \(LIS(n, n + 1) \).

Solution (#3 of \(\infty \)): Let \(LIS(i) \) denote the length of the longest increasing subsequence of the suffix \(A[i..n] \) that begins with \(A[i] \). This function obeys the following recurrence:

\[
LIS(i) = \begin{cases}
1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\
1 + \max \{LIS(j) \mid j > i \text{ and } A[j] > A[i]\} & \text{otherwise}
\end{cases}
\]

(The first case is actually redundant if we define \(\max \emptyset = 0 \).) We need to compute \(\max_i LIS(i) \).

Solution (#4 of \(\infty \)): Add a sentinel value \(A[0] = -\infty \). Let \(LIS(i) \) denote the length of the longest increasing subsequence of the suffix \(A[i..n] \) that begins with \(A[i] \). This function obeys the following recurrence:

\[
LIS(i) = \begin{cases}
1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\
1 + \max \{LIS(j) \mid j > i \text{ and } A[j] > A[i]\} & \text{otherwise}
\end{cases}
\]

(The first case is actually redundant if we define \(\max \emptyset = 0 \).) We need to compute \(LIS(0) - 1 \); the \(-1\) removes the sentinel \(-\infty\) from the start of the subsequence.
Solution (#5 of ∞): Add sentinel values $A[0] = -\infty$ and $A[n+1] = \infty$. Let $LIS(j)$ denote the length of the longest increasing subsequence of the prefix $A[0..j]$ that ends with $A[j]$. This function obeys the following recurrence:

$$LIS(j) = \begin{cases}
1 & \text{if } j = 0 \\
1 + \max \{ LIS(i) \mid i < j \text{ and } A[i] < A[j] \} & \text{otherwise}
\end{cases}$$

We need to compute $LIS(n + 1) - 2$; the -2 removes the sentinels $-\infty$ and ∞ from the subsequence.
2. Given an array $A[1..n]$ of integers, compute the length of a longest **decreasing** subsequence.

Solution (one of many): Add a sentinel value $A[0] = \infty$. Let $LDS(i, j)$ denote the length of the longest decreasing subsequence of $A[j..n]$ where every element is smaller than $A[i]$. This function obeys the following recurrence:

$$
LDS(i, j) = \begin{cases}
0 & \text{if } j > n \\
LDS(i, j+1) & \text{if } j \leq n \text{ and } A[i] \leq A[j] \\
\max\{LDS(i, j+1), 1 + LDS(j, j+1)\} & \text{otherwise}
\end{cases}
$$

We need to compute $LDS(0, 1)$. ■

Solution (clever): Reverse the array A, and then compute the length of the longest increasing subsequence using the algorithm from problem 1. ■

Solution (clever): Multiply every element of A by -1, and then compute the length of the longest increasing subsequence using the algorithm from problem 1. ■

Solution (one of many): The problem statement defines alternating sequences as first going down and then going up ($\searrow\swarrow\searrow\swarrow\ldots$), but we also need to recursively consider alternating sequences that first go up and then go down ($\nearrow\searrow\nearrow\searrow\ldots$). To that end, we define two functions:

- Let $LAS^+(i, j)$ denote the length of the longest alternating subsequence of $A[j..n]$ whose first element (if any) is larger than $A[i]$ and whose second element (if any) is smaller than its first. (These are “standard” alternating subsequences.)
- Let $LAS^-(i, j)$ denote the length of the longest alternating subsequence of $A[j..n]$ whose first element (if any) is smaller than $A[i]$ and whose second element (if any) is larger than its first. (These are “inverted” alternating subsequences.)

These two functions satisfy the following mutual recurrences:

$$
LAS^+(i, j) = \begin{cases}
0 & \text{if } j > n \\
LAS^+(i, j+1) & \text{if } j \leq n \text{ and } A[j] \leq A[i] \\
\max\{LAS^+(i, j+1), 1 + LAS^-(j, j+1)\} & \text{otherwise}
\end{cases}
$$

$$
LAS^-(i, j) = \begin{cases}
0 & \text{if } j > n \\
LAS^-(i, j+1) & \text{if } j \leq n \text{ and } A[j] \geq A[i] \\
\max\{LAS^-(i, j+1), 1 + LAS^+(j, j+1)\} & \text{otherwise}
\end{cases}
$$

Finally, if we add a sentinel value $A[0] = -\infty$, then the length of the longest alternating subsequence of A is $LAS^+(0, 1)$. ■

Solution (one of many): We define two functions:

- Let $LAS^+(i)$ denote the length of the longest alternating subsequence of $A[i..n]$ that starts with $A[i]$ and whose second element (if any) is smaller than $A[i]$. (These are “standard” alternating subsequences.)
- Let $LAS^-(i)$ denote the length of the longest alternating subsequence of $A[i..n]$ that starts with $A[i]$ and whose second element (if any) is larger than $A[i]$. (These are “inverted” alternating subsequences.)

These two functions satisfy the following mutual recurrences:

$$
LAS^+(i) = 1 + \max\{LAS^-(j) \mid j > i \text{ and } A[j] < A[i]\}
$$

$$
LAS^-(i) = 1 + \max\{LAS^+(j) \mid j > i \text{ and } A[j] > A[i]\}
$$

In both recurrences, we assume $\max\emptyset = 0$ so that we have working base cases. We need to compute $\max_i LAS^+(i)$. ■
Harder problems to think about later:

4. Given an array \(A[1..n] \) of integers, compute the length of a longest convex subsequence of \(A \).

Solution: Let \(LCS(i, j) \) denote the length of the longest convex subsequence of \(A[i..n] \) whose first two elements are \(A[i] \) and \(A[j] \). This function obeys the following recurrence:

\[
LCS(i, j) = 1 + \max \{ LCS(j, k) \mid j < k \leq n \text{ and } A[i] + A[k] > 2A[j] \}
\]

Here we define \(\max \emptyset = 0 \); this gives us a working base case. \(\blacksquare \)

Solution (with sentinels): Assume without loss of generality that \(A[i] \geq 0 \) for all \(i \). (Otherwise, we can add \(|m| \) to each \(A[i] \), where \(m \) is the smallest element of \(A[1..n] \).)

Add two sentinel values \(A[0] = 2M + 1 \) and \(A[-1] = 4M + 3 \), where \(M \) is the largest element of \(A[1..n] \).

Let \(LCS(i, j) \) denote the length of the longest convex subsequence of \(A[i..n] \) whose first two elements are \(A[i] \) and \(A[j] \). This function obeys the following recurrence:

\[
LCS(i, j) = 1 + \max \{ LCS(j, k) \mid j < k \leq n \text{ and } A[i] + A[k] > 2A[j] \}
\]

Here we define \(\max \emptyset = 0 \); this gives us a working base case.

Finally, we claim that the length of the longest convex subsequence of \(A[1..n] \) is \(LCS(-1, 0) \). \(\blacksquare \)

Proof: First, consider any convex subsequence \(S \) of \(A[1..n] \), and suppose its first element is \(A[i] \). Then we have \(A[-1] - 2A[0] + A[i] = 4M + 3 - 2(2M + 1) + A[i] = A[i] + 1 > 0 \), which implies that \(A[-1] \cdot A[0] \cdot S \) is a convex subsequence of \(A[-1..n] \). So the longest convex subsequence of \(A[1..n] \) has length at most \(LCS(-1, 0) - 2 \).

On the other hand, removing \(A[-1] \) and \(A[0] \) from any convex subsequence of \(A[-1..n] \) leaves a convex subsequence of \(A[1..n] \). So the longest subsequence of \(A[1..n] \) has length at least \(LCS(-1, 0) - 2 \). \(\square \)
5. Given an array \(A[1..n] \), compute the length of a longest **palindrome** subsequence of \(A \).

Solution (naïve): Let \(LPS(i, j) \) denote the length of the longest palindrome subsequence of \(A[i..j] \). This function obeys the following recurrence:

\[
LPS(i, j) = \begin{cases}
0 & \text{if } i > j \\
1 & \text{if } i = j \\
\max \left\{ LPS(i + 1, j), LPS(i, j - 1) \right\} & \text{if } i < j \text{ and } A[i] \neq A[j] \\
2 + LPS(i + 1, j - 1) & \text{otherwise}
\end{cases}
\]

We need to compute \(LPS(1, n) \).

Solution (with greedy optimization): Let \(LPS(i, j) \) denote the length of the longest palindrome subsequence of \(A[i..j] \). Before stating a recurrence for this function, we make the following useful observation.

Claim 1. If \(i < j \) and \(A[i] = A[j] \), then \(LPS(i, j) = 2 + LPS(i + 1, j - 1) \).

Proof: Suppose \(i < j \) and \(A[i] = A[j] \). Fix an arbitrary longest palindrome subsequence \(S \) of \(A[i..j] \). There are four cases to consider.

- If \(S \) uses neither \(A[i] \) nor \(A[j] \), then \(A[i] \cdot S \cdot A[j] \) is a palindrome subsequence of \(A[i..j] \) that is longer than \(S \), which is impossible.
- Suppose \(S \) uses \(A[i] \) but not \(A[j] \). Let \(A[k] \) be the last element of \(S \). If \(k = i \), then \(A[i] \cdot S \cdot A[j] \) is a palindrome subsequence of \(A[i..j] \) that is longer than \(S \), which is impossible. Otherwise, replacing \(A[k] \) with \(A[j] \) gives us a palindrome subsequence of \(A[i..j] \) with the same length as \(S \) that uses both \(A[i] \) and \(A[j] \).
- Suppose \(S \) uses \(A[j] \) but not \(A[i] \). Let \(A[h] \) be the first element of \(S \). If \(h = j \), then \(A[i] \cdot A[j] \) is a palindrome subsequence of \(A[i..j] \) that is longer than \(S \), which is impossible. Otherwise, replacing \(A[h] \) with \(A[i] \) gives us a palindrome subsequence of \(A[i..j] \) with the same length as \(S \) that uses both \(A[i] \) and \(A[j] \).
- Finally, \(S \) might include both \(A[i] \) and \(A[j] \).

In all cases, we find either a contradiction or a longest palindrome subsequence of \(A[i..j] \) that uses both \(A[i] \) and \(A[j] \).

Claim 1 implies that the function \(LPS \) satisfies the following recurrence:

\[
LPS(i, j) = \begin{cases}
0 & \text{if } i > j \\
1 & \text{if } i = j \\
\max \left\{ LPS(i + 1, j), LPS(i, j - 1) \right\} & \text{if } i < j \text{ and } A[i] \neq A[j] \\
2 + LPS(i + 1, j - 1) & \text{otherwise}
\end{cases}
\]
We need to compute $LPS(1, n)$.

And yes, optimizations like this always require a proof of correctness, both in homework and on exams. Premature optimization is the root of all evil.