Consider the following recursively defined function on strings:

\[
\text{stutter}(w) := \begin{cases}
\epsilon & \text{if } w = \epsilon \\
 a a \cdot \text{stutter}(x) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x
\end{cases}
\]

Intuitively, \(\text{stutter}(w) \) doubles every symbol in \(w \). For example:

- \(\text{stutter}(\text{PRESTO}) = \text{PPRREESSTTOO} \)
- \(\text{stutter}(\text{HOCUS\textbulletPOCUS}) = \text{HHOOCCUUSS\textbullet\textbulletPP00CCUUSS} \)

Let \(L \) be an arbitrary regular language.

1. Prove that the language \(\text{Unstutter}(L) := \{ w \mid \text{stutter}(w) \in L \} \) is regular.

Solution: Let \(M = (\Sigma, Q, s, A, \delta) \) be an arbitrary DFA that accepts \(L \).

We construct an DFA \(M' = (\Sigma, Q', s', A', \delta') \) that accepts \(\text{stutter}^{-1}(L) \) as follows:

\[
Q' = Q \\
s' = s \\
A' = A \\
\delta'(q, a) = \delta(\delta(q, a), a)
\]

\(M' \) reads its input string \(w \) and simulates \(M \) running on \(\text{stutter}(w) \). Each time \(M' \) reads a symbol, it passes two copies of that symbol to the simulation of \(M \).

■
2. Prove that the language \(\text{Stutter}(L) := \{ \text{stutter}(w) \mid w \in L \} \) is regular.

Solution: Let \(M = (\Sigma, Q, s, A, \delta) \) be a DFA that accepts \(L \).

We construct an DFA \(M' = (\Sigma, Q', s', A', \delta') \) that accepts \(\text{stutter}(L) \) as follows:

\[
\begin{align*}
Q' &= Q \times (\{\bullet\} \cup \Sigma) \cup \{\text{fail}\} \quad \text{for some new symbol } \bullet \notin \Sigma \\
s' &= (s, \bullet) \\
A' &= \{(q, \bullet) \mid q \in A\} \\
\delta'((q, \bullet), a) &= (q, a) \quad \text{for all } q \in Q \text{ and } a \in \Sigma \\
\delta'((q, a), b) &= \begin{cases}
(\delta(q, a), \bullet) & \text{if } a = b \\
\text{fail} & \text{if } a \neq b
\end{cases} \quad \text{for all } q \in Q \text{ and } a, b \in \Sigma \\
\delta'(\text{fail}, a) &= \text{fail} \quad \text{for all } a \in \Sigma
\end{align*}
\]

\(M' \) reads the input string \(\text{stutter}(w) \) and simulates \(M \) running on input \(w \).

- State \((q, \bullet)\) means \(M' \) has just read an even-indexed\(^a\) symbol in \(\text{stutter}(w) \), so \(M \) should ignore the next symbol (if any).
- For any symbol \(a \in \Sigma \), state \((q, a)\) means \(M' \) has just read an odd-indexed symbol in \(\text{stutter}(w) \), and that symbol was \(a \). If the next symbol is an \(a \), then \(M \) should transition normally; otherwise, the simulation should fail.
- The state \(\text{fail} \) means \(M' \) has read two successive symbols that should have been equal but were not; the input string is not \(\text{stutter}(w) \) for any string \(w \).

\(^a\)The first symbol in the input string has index 1; the second symbol has index 2, and so on.
Solution (via regular expressions): Let R be an arbitrary regular expression. We recursively construct a regular expression $\text{stutter}(R)$ as follows:

$$
\text{stutter}(R) := \begin{cases}
\emptyset & \text{if } R = \emptyset \\
\text{stutter}(w) & \text{if } R = w \text{ for some string } w \in \Sigma^* \\
\text{stutter}(A) + \text{stutter}(B) & \text{if } R = A + B \text{ for some regexen } A \text{ and } B \\
\text{stutter}(A) \cdot \text{stutter}(B) & \text{if } R = A \cdot B \text{ for some regexen } A \text{ and } B \\
(\text{stutter}(A))^* & \text{if } R = A^* \text{ for some regex } A
\end{cases}
$$

To prove that $L(\text{stutter}(R)) = \text{stutter}(L(R))$, we need the following identities for arbitrary languages A and B:

- $\text{stutter}(A \cup B) = \text{stutter}(A) \cup \text{stutter}(B)$
- $\text{stutter}(A \cdot B) = \text{stutter}(A) \cdot \text{stutter}(B)$
- $\text{stutter}(A^*) = (\text{stutter}(A))^*$

These identities can all be proved by inductive definition-chasing, after which the claim $L(\text{stutter}(R)) = \text{stutter}(L(R))$ follows by induction. We leave the details of the induction proofs as an exercise for a future semester an exam the reader.

Equivalently, we can directly transform R into $\text{stutter}(R)$ by replacing every explicit string $w \in \Sigma^*$ inside R with $\text{stutter}(w)$ (with additional parentheses if necessary). For example:

$$
\text{stutter}\left((1 + \varepsilon)(01)^*(0 + \varepsilon) + 0^*\right) = (11 + \varepsilon)(0011)^*(00 + \varepsilon) + (00)^*
$$

Although this may look simpler, actually proving that it works requires the same induction arguments.

■
3. Let L be an arbitrary regular language.

(a) Prove that the language $\text{INSERT}1(L) := \{xy \mid xy \in L\}$ is regular.

Intuitively, $\text{INSERT}1(L)$ is the set of all strings that can be obtained from strings in L by inserting exactly one 1. For example:

$$\text{INSERT}1(\{\epsilon, 00, 101101\}) = \{1, 100, 010, 001, 1101101, 1011101, 1011011\}$$

Solution: Let $M = (\Sigma, Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M' = (\Sigma, Q', s', A', \delta')$ that accepts $\text{INSERT}1(L)$ as follows:

$$Q' := Q \times \{\text{before, after}\}$$

$$s' := (s, \text{before})$$

$$A' := \{(q, \text{after}) \mid q \in A\}$$

$$\delta'((q, \text{before}), a) = \begin{cases}
\{(\delta(q, a), \text{before}), (q, \text{after})\} & \text{if } a = 1 \\
\{(\delta(q, a), \text{before})\} & \text{otherwise}
\end{cases}$$

$$\delta'((q, \text{after}), a) = \{(\delta(q, a), \text{after})\}$$

M' nondeterministically chooses one 1 in the input string to ignore, and simulates M running on the rest of the input string.

- The state (q, before) means (the simulation of) M is in state q and M' has not yet skipped over a 1.
- The state (q, after) means (the simulation of) M is in state q and M' has already skipped over a 1.

\[\blacksquare\]
(b) Prove that the language $\text{DELETE}_1(L) := \{xy \mid x1y \in L\}$ is regular.

Intuitively, $\text{DELETE}_1(L)$ is the set of all strings that can be obtained from strings in L by deleting exactly one 1. For example:

$$\text{DELETE}_1(\{\epsilon, 00, 101101\}) = \{01101, 10101, 10110\}$$

Solution: Let $M = (\Sigma, Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M' = (\Sigma, Q', s', A', \delta')$ with ϵ-transitions that accepts $\text{delete}_1(L)$ as follows:

- $Q' := Q \times \{\text{before, after}\}$
- $s' := (s, \text{before})$
- $A' := \{(q, \text{after}) \mid q \in A\}$
- $\delta'(\{(q, \text{before}), \epsilon\}) = \{(\delta(q, 1), \text{after})\}$
- $\delta'(\{(q, \text{after}), \epsilon\}) = \emptyset$
- $\delta'(\{(q, \text{before}), a\}) = \{(\delta(q, a), \text{before})\}$
- $\delta'(\{(q, \text{after}), a\}) = \{(\delta(q, a), \text{after})\}$

M' simulates M, but inserts a single 1 into M’s input string at a nondeterministically chosen location.

- State (q, before) means (the simulation of) M is in state q and M' has not yet inserted a 1.
- State (q, after) means (the simulation of) M is in state q and M' has already inserted a 1.

\blacksquare
4. Consider the following recursively defined function on strings:

\[
\text{evens}(w) := \begin{cases}
\epsilon & \text{if } w = \epsilon \\
\epsilon & \text{if } w = \mathit{a} \text{ for some symbol } a \\
b \cdot \text{evens}(x) & \text{if } w = \mathit{abx} \text{ for some symbols } \mathit{a} \text{ and } \mathit{b} \text{ and some string } x
\end{cases}
\]

Intuitively, \text{evens}(w) skips over every other symbol in \(w \). For example:

- \text{evens}('EXPELLIARMUS') = 'XELAMS'
- \text{evens}('AVADA\text{"}KEDAVRA') = 'VD\text{"}EAR'.

Once again, let \(L \) be an arbitrary regular language.

(a) Prove that the language \(\text{Unevens}(L) := \{ w \mid \text{evens}(w) \in L \} \) is regular.

\text{Solution:} Let \(M = (\Sigma, Q, s, A, \delta) \) be a DFA that accepts \(L \). We construct a DFA \(M' = (\Sigma, Q', s', A', \delta') \) that accepts \(\text{evens}^{-1}(L) \) as follows:

\[
\begin{align*}
Q' &= Q \times \{0, 1\} \\
s' &= (s, 0) \\
A' &= A \times \{0, 1\} \\
\delta'((q, 0), a) &= (q, 1) \\
\delta'((q, 1), a) &= (\delta(q, a), 0)
\end{align*}
\]

\(M' \) reads its input string \(w \) and simulates \(M \) running on \(\text{evens}(w) \).

- State \((q, 0)\) means \(M \) is in state \(q \) and \(M' \) has read an even number of symbols, so \(M \) should ignore the next symbol (if any).
- State \((q, 1)\) means \(M \) is in state \(q \) and \(M' \) has read an odd number of symbols, so \(M \) should read the next symbol (if any).
(b) Prove that the language \(\text{Evens}(L) := \{\text{evens}(w) \mid w \in L\} \) is regular.

Solution: Let \(M = (\Sigma, Q, s, A, \delta) \) be a DFA that accepts \(L \). We construct an NFA \(M' = (\Sigma, Q', s', A', \delta') \) that accepts \(\text{evens}(L) \) as follows:

\[
\begin{align*}
Q' &= Q \\
s' &= s \\
A' &= A \cup \{q \in Q \mid \delta(q, a) \cap A \neq \emptyset \text{ for some } a \in \Sigma\} \\
\delta'(q, a) &= \bigcup_{b \in \Sigma} \{\delta(q, b), a\}
\end{align*}
\]

\(M' \) reads the input string \(\text{evens}(w) \) and simulates \(M \) running on string \(w \), while nondeterministically guessing the missing symbols in \(w \).

- When \(M' \) reads the symbol \(a \) from \(\text{evens}(w) \), it guesses a symbol \(b \in \Sigma \) and simulates \(M \) reading \(ba \) from \(w \).
- When \(M' \) finishes \(\text{evens}(w) \), it guesses whether \(w \) has even or odd length, and in the odd case, it guesses the last symbol in \(w \).