Give context-free grammars for each of the following languages.

1. All palindromes in Σ^*

 Solution:

 $S \rightarrow \epsilon | 0 | 1 | 0S0 | 1S1$

 This is just a recursive definition of “palindrome”.

2. All palindromes in Σ^* that contain an even number of 1s

 Solution:

 $S \rightarrow \epsilon | 0 | 0S0 | 1S1$

3. All palindromes in Σ^* that end with 1

 Solution:

 $S \rightarrow 1 | 1A1$

 Palindromes that start and end with 1

 $A \rightarrow \epsilon | 0 | 1 | 0A0 | 1A1$

 All palindromes

4. All palindromes in Σ^* whose length is divisible by 3

 Solution: Case analysis for the win!

 $S \rightarrow 0A0 | 1A1 | \epsilon$

 palindromes, length mod 3 = 0

 $A \rightarrow 0B0 | 1B1 | 0 | 1$

 palindromes, length mod 3 = 1

 $B \rightarrow 0S0 | 1S1$

 palindromes, length mod 3 = 2

 Solution: Brute force for the win!

 $S \rightarrow \epsilon | 000 | 010 | 101 | 111$

 $| 000S00 | 001S100 | 010S010 | 011S110$

 $| 100S001 | 101S101 | 110S011 | 111S111$

5. All palindromes in Σ^* that do not contain the substring 00

 Solution:

 $S \rightarrow \epsilon | 1 | 0 | 0A0 | 1S1$

 Palindromes with no 00

 $A \rightarrow 1 | 1S1$

 Palindromes with no 00 that start and end with 1
Harder problems to work on later:

6. \(\{0^{2n}1^n \mid n \geq 0\} \)

Solution: \(S \rightarrow \epsilon \mid 00S1 \)

7. \(\{0^{m+1}\mid m \neq 2n\} \)

Solution: Intuitively, we can parse any string \(w \in L \) as follows. First, remove the first \(2k \) \(0 \)s and the last \(k \) \(1 \)s, for the largest possible value of \(k \). The remaining string cannot be empty, and it must consist entirely of \(0 \)s, entirely of \(1 \)s, or a single \(0 \) followed by any number of \(1 \)s.

\[
S \rightarrow 00S1 \mid A \mid B \mid C \quad \{0^{m+1}\mid m \neq 2n\}
\]

\[
A \rightarrow 0 \mid 0A \quad 0^+ \\
B \rightarrow 1 \mid 1B \quad 1^+ \\
C \rightarrow 0 \mid 0B \quad 01^*
\]

Solution: To simplify notation, let \(\Delta(w) = \#(0,w) - 2\#(1,w) \). Our solution uses the following case analysis. Let \(w \) be an arbitrary string in this language.

- Because \(\Delta(w) \neq 0 \), either \(\Delta(w) > 0 \) or \(\Delta(w) < 0 \).
- If \(\Delta(w) > 0 \), then \(w = 0^iz \) for some integer \(i > 0 \) and some suffix \(z \) with \(\Delta(z) = 0 \).
- If \(\Delta(w) < 0 \), then \(w = x1^j \) for some integer \(j > 0 \) and some prefix \(x \) with either \(\Delta(x) = 0 \) or \(\Delta(x) = 1 \).
- Substrings with \(\Delta = 0 \) are generated by the previous grammar; we need only a small tweak to generate substrings with \(\Delta = 1 \).

We encode this case analysis as a CFG as follows. The nonterminals \(M \) and \(L \) generate all strings where the number of \(0 \)s is More or Less than twice the number of \(1 \)s, respectively. The last nonterminal generates strings with \(\Delta = 0 \) or \(\Delta = 1 \).

\[
S \rightarrow M \mid L \quad \{0^{m+1}\mid m \neq 2n\} \quad (\Delta \neq 0)
\]

\[
M \rightarrow 0M \mid 0E \quad \{0^{m+1}\mid m > 2n\} \quad (\Delta > 0)
\]

\[
L \rightarrow L1 \mid E1 \quad \{0^{m+1}\mid m < 2n\} \quad (\Delta < 0)
\]

\[
E \rightarrow \epsilon \mid 0 \mid 00E1 \quad \{0^{m+1}\mid m = 2n \text{ or } 2n+1\}
\]
Solution: Here is another way to encode the logic of the previous solution as a CFG. We either identify a non-empty prefix of 0s or a non-empty prefix of 1s, so that the rest of the string as “balanced” as possible. We also generate strings with $\Delta = 1$ using a separate non-terminal.

Production	Constraint
$S \rightarrow AE \mid EB \mid FB$	\{$0^m 1^n \mid m \neq 2n\}$
$A \rightarrow 0 \mid 0A$	$0^+ = \{0^i \mid i \geq 1\}$
$B \rightarrow 1 \mid 1B$	$1^+ = \{1^j \mid j \geq 1\}$
$E \rightarrow \varepsilon \mid 00E1$	\{$0^m 1^n \mid m = 2n\}$
$F \rightarrow 0E$	\{$0^m 1^n \mid m = 2n + 1\}$

Solution: Here is yet another way to encode the logic of the second solution as a CFG. We separately generate all strings of the form $0^{\text{odd}}1^*$, so that we don’t have to worry about the case $\Delta = 1$ separately.

Production	Constraint
$S \rightarrow D \mid M \mid L$	\{$0^m 1^n \mid m \neq 2n\}$
$D \rightarrow 0 \mid 00D \mid D1$	\{$0^m 1^n \mid m \text{ is odd}\}$
$M \rightarrow 00M \mid 00E$	\{$0^m 1^n \mid m > 2n \text{ and } m \text{ is even}\}$
$L \rightarrow L1 \mid E1$	\{$0^m 1^n \mid m < 2n \text{ and } m \text{ is even}\}$
$E \rightarrow \varepsilon \mid 00E1$	\{$0^m 1^n \mid m = 2n\}$

8. \{$0,1\}^* \setminus \{0^{2n}1^n \mid n \geq 0\}$

Solution: This language is the union of the previous language and the complement of 0^*1^*, which is $(0 + 1)^*10(0 + 1)^*$.

Production	Constraint
$S \rightarrow T \mid X$	\{$0,1\}^* \setminus \{0^{2n}1^n \mid n \geq 0\}$
$T \rightarrow 00T1 \mid A \mid B \mid C$	\{$0^m 1^n \mid m \neq 2n\}$
$A \rightarrow 0 \mid 0A$	0^+
$B \rightarrow 1 \mid 1B$	1^+
$C \rightarrow 0 \mid 0B$	01^*
$X \rightarrow Z10Z$	$(0 + 1)^*10(0 + 1)^*$
$Z \rightarrow \varepsilon \mid 0Z \mid 1Z$	$(0 + 1)^*$
9. \(\{ w \in \{0,1\}^* \mid \#(0,w) = 2 \cdot \#(1,w) \} \) — Binary strings where the number of 0s is exactly twice the number of 1s.

Solution: \(S \rightarrow \varepsilon \mid SS \mid 00S1 \mid 1S00 \mid 0S1S0. \)

Let \(L \) denote the language generated by this grammar. For any string \(w \), let \(\Delta(w) = \#(0,w) - 2 \cdot \#(1,w) \). We claim that \(L \) contains every binary string \(w \) such that \(\Delta(w) = 0 \).

Let \(w \) be an arbitrary binary string such that \(\Delta(w) = 0 \). Assume that \(L \) contains every string \(x \) shorter than \(w \) such that \(\Delta(x) = 0 \). There are five cases to consider.

- If \(w = \varepsilon \), the grammar immediately implies \(w \in L \).
- Suppose \(\Delta(x) = 0 \) for some non-empty proper prefix \(x \) of \(w \). Then we can write \(w = xy \), where \(\Delta(y) = \Delta(w) - \Delta(x) = 0 \). The induction hypothesis implies that \(x \in L \) and \(y \in L \). It follows that \(w = xy \in L \).
- Suppose \(\Delta(x) > 0 \) for every non-empty proper prefix \(x \) of \(w \). In this case, \(w \) must start with \(00 \) and end with \(1 \). Thus, \(w = 00x1 \) for some string \(x \). We easily observe that \(\Delta(x) = 0 \). So the inductive hypothesis implies \(x \in L \). It follows that \(w = 00x1 \in L \).
- Suppose \(\Delta(x) < 0 \) for every non-empty proper prefix \(x \) of \(w \). In this case, \(w \) must start with \(1 \) and end with \(00 \). Let \(1x \) be the shortest non-empty prefix with \(\Delta(1x) = 1 \). Then \(\Delta(x) = 0 \), and therefore \(x \in L \) by the inductive hypothesis. It follows that \(w = 1x00 \in L \).
- Finally, suppose \(w \) starts with \(0 \) but \(\Delta(x) < 0 \) for some proper prefix \(x \). Let \(x \) be the shortest non-empty proper prefix of \(w \) with \(\Delta(x) < 0 \). Then \(x = 0y1 \) for some substring \(y \) with \(\Delta(y) = 0 \). Thus, we can write \(w = 0y1z \), and we easily observe that \(\Delta(z) = 0 \). The induction hypothesis implies that \(y \in L \) and \(z \in L \). It follows that \(w = 0y1z0 \in L \).
10. \(\{0,1\}^* \setminus \{ww \mid w \in \{0,1\}^*\} \).

Solution: All strings of odd length are in \(L \).

Let \(w \) be any even-length string in \(L \), and let \(m = |w|/2 \). For some index \(i \leq m \), we have \(w_i \neq w_{m+i} \). Thus, \(w \) can be written as either \(x1y0z \) or \(x0y1z \) for some substrings \(x, y, z \) such that \(|x| = i - 1 \), \(|y| = m - 1 \), and \(|z| = m - i \). We can further decompose \(y \) into a prefix of length \(i - 1 \) and a suffix of length \(m - i \). So we can write any even-length string \(w \in L \) as either \(x1x'z'0z \) or \(x0x'z'1z \), for some strings \(x, x', z, z' \) with \(|x| = |x'| = i - 1 \) and \(|z| = |z'| = m - i \).

Said more simply, we can divide \(w \) into two odd-length strings, one with a 0 at its center, and the other with a 1 at its center.

\[
\begin{align*}
S & \rightarrow AB \mid BA \mid A \mid B & \text{strings not of the form } ww \\
A & \rightarrow 0 \mid \Sigma \Sigma & \text{odd-length strings with 0 at center} \\
B & \rightarrow 1 \mid \Sigma \Sigma & \text{odd-length strings with 1 at center} \\
\Sigma & \rightarrow 0 \mid 1 & \text{single character}
\end{align*}
\]