Give regular expressions for each of the following languages over the binary alphabet \{0, 1\}.

1. All strings containing the substring 000.

Solution: \((0 + 1)^*000(0 + 1)^*\)

2. All strings not containing the substring 000.

Solution: Hidden until after the PrairieLearn Guided Problem Set 2 deadline.

3. All strings in which every run of 0s has length at least 3.

Solution: \((1 + 000^*)^*\)

Solution: \((\epsilon + 1)((\epsilon + 000^*)1)^*(\epsilon + 000^*)\)

4. All strings in which every 1 appears before any substring 000.

Solution: \((1 + 01 + 001)^*0^*\)

5. All strings containing at least three 0s.

Solution: \((0 + 1)^*0(0 + 1)^*0(0 + 1)^*0(0 + 1)^*\)

Solution (clever): \(1^*01^*01^*0(0 + 1)^*\) or \((0 + 1)^*01^*01^*01^*\)

6. Every string except 000. [Hint: Don’t try to be clever.]

Solution: Hidden until after the PrairieLearn Guided Problem Set 2 deadline.
7. All strings \(w \) such that in every prefix of \(w \), the numbers of 0s and 1s differ by at most 1.

Solution: Equivalently, strings in which every even-length prefix has the same number of 0s and 1s:

\[(01 + 10)^*(0 + 1 + \varepsilon) \]

8. All strings containing at least two 0s and at least one 1.

Solution: Hidden until after the PrairieLearn Guided Problem Set 2 deadline.

9. All strings \(w \) such that in every prefix of \(w \), the number of 0s and 1s differ by at most 2.

Solution:

\[0(01)^*1 + 1(10)^*0)^* \cdot (\varepsilon + 0(01)^*(0 + \varepsilon) + 1(10)^*(1 + \varepsilon)) \]
10. All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

Solution: Every string in \(\{0,1\}^* \) alternates between (possibly empty) blocks of 0s and individual 1s; that is, \(\{0,1\}^* = (0^*1)^*0^* \). Trivially, every 000 substring is contained in some block of 0s. Our strategy is to consider which blocks of 0s contain an even or odd number of 000 substrings.

- Let \(X \) denote the set of all strings in \(\theta^* \) with an **even** number of 000 substrings. In particular, we have \(\epsilon \in X \). We easily observe that \(X = \{\theta^n | n = 1 \text{ or } n \text{ is even}\} \) and thus
 \[
 X = \theta + (\theta 0)^*
 \]

- Let \(Y \) denote the set of all strings in \(\theta^* \) with an **odd** number of 000 substrings. We easily observe that \(Y = \{\theta^n | n > 1 \text{ and } n \text{ is odd}\} \) and thus
 \[
 Y = 000(\theta 0)^*\]

- Let \(Z \) denote the set of strings that starts with a run of 0s in \(Y \), ends with a different run of 0s in \(Y \), and otherwise every run of 0s is in \(X \). The set of non-empty runs of 1s is \(11^* \), so we immediately have.
 \[
 Z = Y 11^* (X 11^*)^* Y
 \]

In fact, we can simplify this expression to \(Z = Y 1 (X 1)^* Y \) because \(\epsilon \in X \). Plugging in our earlier expressions for \(X \) and \(Y \) gives us
 \[
 Z = 000(\theta 0)^* 1 \cdot (\theta + (\theta 0)^* 1)^* \cdot 000(\theta 0)^*
 \]

- Finally, let \(L \) denote the set of all strings in \(\{0,1\}^* \) with an even number of 000 substrings.
 \[
 L = 1^* ((X + Z) 11^*)^* (X + Z) 1^*
 \]

The subexpression \((X + Z) \) matches all maximal substrings that start with 0, end with 0, and have an even number of 000 substrings. Any string in \(L \) can be broken into an alternating sequence of runs of 1s and strings in \((X + Z) \). In fact, we can simplify this expression to \(L = ((X + Z) 1)^* (X + Z) \) because \(\epsilon \in X \). Plugging in our earlier expressions for \(X \) and \(Z \) gives us a complete regular expression for \(L \):
 \[
 L = ((\theta + (\theta 0)^* + 000(\theta 0)^*)^* 1 \cdot ((\theta + (\theta 0)^*) 1)^* \cdot 000(\theta 0)^* \cdot 1)^* \\
 \cdot (\theta + (\theta 0)^* + 000(\theta 0)^*)^* 1 \cdot ((\theta + (\theta 0)^*) 1)^* \cdot 000(\theta 0)^*)
 \]

Whew!