Give regular expressions for each of the following languages over the binary alphabet \{0, 1\}.

1. All strings containing the substring 000.

 \textbf{Solution:} \((0 + 1)^*000(0 + 1)^*\)

2. All strings \textbf{not} containing the substring 000.

 \textbf{Solution:}
 \((1 + 01 + 001)^*(\varepsilon + 0 + 00)\)

 \textbf{Solution:}
 \((\varepsilon + 0 + 00)(1(\varepsilon + 0 + 00))^*\)

 \textbf{Solution:}
 \(1^*((\varepsilon + 0 + 00)11^*)(\varepsilon + 0 + 00)\)

3. All strings in which every run of 0s has length at least 3.

 \textbf{Solution:}
 \((1 + 0000^*)^*\)

 \textbf{Solution:}
 \((\varepsilon + 1)((\varepsilon + 0000^*)1)^*(\varepsilon + 0000^*)\)

4. All strings in which every 1 appears before every substring 000.

 \textbf{Solution:}
 \((1 + 01 + 001)^*0^*\)

5. All strings containing at least three 0s.

 \textbf{Solution:}
 \((0 + 1)^*0(0 + 1)^*0(0 + 1)^*0(0 + 1)^*\)

 \textbf{Solution (clever):}
 \(1^*01^*01^*0(0 + 1)^*\) or \((0 + 1)^*01^*01^*01^*\)

6. Every string except 000. \textbf{[Hint: Don’t try to be clever.]}

 \textbf{Solution:} Every string \(w \neq 000\) satisfies one of three conditions: Either \(|w| < 3\), or \(|w| = 3\) and \(w \neq 000\), or \(|w| > 3\). The first two cases include only a finite number of strings, so we just list them explicitly, each case on one line. The expression on the last line includes \textbf{all} strings of length at least 4.

 \[\varepsilon + 0 + 1 + 00 + 01 + 10 + 11 \]

 \[+ 001 + 010 + 011 + 100 + 101 + 110 + 111 \]

 \[+ (1 + 0)(1 + 0)(1 + 0)(1 + 0)(1 + 0)^*\]

 \textbf{Solution (clever):} \(\varepsilon + 0 + 00 + (1 + 01 + 001 + 000(1 + 0))(1 + 0)^*\)
7. All strings \(w \) such that in every prefix of \(w \), the numbers of 0s and 1s differ by at most 1.

Solution: Equivalently, strings in which every even-length prefix has the same number of 0s and 1s:

\[
(01 + 10)^*(0 + 1 + \epsilon)
\]

*8. All strings containing at least two 0s and at least one 1.

Solution: There are three possibilities for how the three required symbols are ordered:

- Contains a 1 before two 0s: \((0 + 1)^*1(0 + 1)^*0(0 + 1)^*0(0 + 1)^*\)
- Contains a 1 between two 0s: \((0 + 1)^*0(0 + 1)^*1(0 + 1)^*0(0 + 1)^*\)
- Contains a 1 after two 0s: \((0 + 1)^*0(0 + 1)^*0(0 + 1)^*1(0 + 1)^*\)

So putting these cases together, we get the following:

\[
(0 + 1)^*1(0 + 1)^*0(0 + 1)^*0(0 + 1)^* + (0 + 1)^*0(0 + 1)^*1(0 + 1)^*0(0 + 1)^* + (0 + 1)^*0(0 + 1)^*0(0 + 1)^*1(0 + 1)^*
\]

Solution: There are three possibilities for how such a string can begin:

- Start with 00, then any number of 0s, then 1, then anything.
- Start with 01, then any number of 1s, then 0, then anything.
- Start with 1, then a substring with exactly two 0s, then anything.

All together: \(000^*1(0 + 1)^* + 011^*0(0 + 1)^* + 11^*01^*0(0 + 1)^*\)

Or equivalently: \((000^*1 + 011^*0 + 11^*01^*0)(0 + 1)^*\)

Solution (clever): \((0 + 1)^*(101^*0 + 011^*0 + 01^*01)(0 + 1)^*\)

*9. All strings \(w \) such that in every prefix of \(w \), the number of 0s and 1s differ by at most 2.

Solution: \((0(01)^*1 + 1(10)^*0)^* \cdot (\epsilon + 0(01)^*(0 + \epsilon) + 1(10)^*(1 + \epsilon))\)
10. All strings in which the substring 000 appears an even number of times.
(For example, 0010000 and 0000 are in this language, but 00000 is not.)

Solution: Every string in \(\{0,1\}^* \) alternates between (possibly empty) blocks of 0s and individual 1s; that is, \(\{0,1\}^* = (0^*1)^*0^* \). Trivially, every 000 substring is contained in some block of 0s. Our strategy is to consider which blocks of 0s contain an even or odd number of 000 substrings.

• Let \(X \) denote the set of all strings in \(\theta^* \) with an even number of 000 substrings. In particular, we have \(\epsilon \in X \). We easily observe that \(X = \{\theta^n \mid n = 1 \text{ or } n \text{ is even}\} \) and thus

\[
X = \theta + (00)^*
\]

• Let \(Y \) denote the set of all strings in \(\theta^* \) with an odd number of 000 substrings. We easily observe that \(Y = \{\theta^n \mid n > 1 \text{ and } n \text{ is odd}\} \) and thus

\[
Y = 000(00)^*
\]

• Let \(Z \) denote the set of strings that starts with a run of 0s in \(Y \), ends with a different run of 0s in \(Y \), and otherwise every run of 0s is in \(X \). The set of non-empty runs of 1s is \(11^* \), so we immediately have.

\[
Z = Y 11^*(X 11^*)^* Y
\]

In fact, we can simplify this expression to \(Z = Y 1(X 1)^* Y \) because \(\epsilon \in X \). Plugging in our earlier expressions for \(X \) and \(Y \) gives us

\[
Z = 000(00)^* 1 \cdot (\theta + (00)^*)_1 \cdot 000(00)^*
\]

• Finally, let \(L \) denote the set of all strings in \(\{0,1\}^* \) with an even number of 000 substrings.

\[
L = 1^*((X + Z) 11^*)^*(X + Z) 1^*
\]

The subexpression \((X + Z) \) matches all maximal substrings that start with 0, end with 0, and have an even number of 000 substrings. Any string in \(L \) can be broken into an alternating sequence of runs of 1s and strings in \((X + Z) \). In fact, we can simplify this expression to \(L = ((X + Z) 1)^*(X + Z) \) because \(\epsilon \in X \). Plugging in our earlier expressions for \(X \) and \(Z \) gives us a complete regular expression for \(L \):

\[
L = ((\theta + (00)^*) + 000(00)^* 1 \cdot ((\theta + (00)^*) 1) \cdot 000(00)^*) \cdot 1^*
\cdot ((\theta + (00)^*) + 000(00)^* 1 \cdot ((\theta + (00)^*) 1) \cdot 000(00)^*)
\]

Whew!