Rice’s Theorem. Let \(\mathcal{L} \) be any set of languages that satisfies the following conditions:

- There is a Turing machine \(Y \) such that \(\text{Accept}(Y) \in \mathcal{L} \).
- There is a Turing machine \(N \) such that \(\text{Accept}(N) \notin \mathcal{L} \).

The language \(\text{AcceptIn}(\mathcal{L}) := \{ \langle M \rangle \mid \text{Accept}(M) \in \mathcal{L} \} \) is undecidable.

Prove that the following languages are undecidable using Rice’s Theorem:

1. \(\text{AcceptRegular} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is regular} \} \)

 \[\text{Solution:} \] Here and in all following solutions, let \(M_{\text{Accept}} \) be any Turing machine that accepts every input, and let \(M_{\text{Reject}} \) be any Turing machine that rejects every input.

 Let \(M \) be any Turing machine that decides our favorite non-regular language \(\{0^n1^n \mid n \geq 0 \} \). Then \(\text{Accept}(M_{\text{Reject}}) = \emptyset \) is regular, but \(\text{Accept}(M) \) is not. \(\blacksquare \)

2. \(\text{AcceptILLINI} := \{ \langle M \rangle \mid M \text{ accepts the string ILLINI} \} \)

 \[\text{Solution:} \] \(\text{Accept}(M_{\text{Accept}}) = \Sigma^* \) contains the string ILLINI, but \(\text{Accept}(M_{\text{Reject}}) = \emptyset \) does not. \(\blacksquare \)

3. \(\text{AcceptPalindrome} := \{ \langle M \rangle \mid M \text{ accepts at least one palindrome} \} \)

 \[\text{Solution:} \] Again, \(\text{Accept}(M_{\text{Accept}}) = \Sigma^* \) contains at least one palindrome, but \(\text{Accept}(M_{\text{Reject}}) = \emptyset \) does not. \(\blacksquare \)

4. \(\text{AcceptThree} := \{ \langle M \rangle \mid M \text{ accepts exactly three strings} \} \)

 \[\text{Solution:} \] Let \(M \) be any Turing machine that accepts the strings IL, LI, and NI, and nothing else. \(\text{Accept}(M) \) contains exactly three strings, but \(\text{Accept}(M_{\text{Reject}}) = \emptyset \) does not. \(\blacksquare \)

5. \(\text{AcceptUndecidable} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is undecidable} \} \)

 \[\text{Solution:} \] Let \(\text{AcceptAcceptEmpty} \) be any Turing machine that accepts the language \(\{ \langle M \rangle \mid M \text{ accepts the empty string } \varepsilon \} \). (Given \(\langle M \rangle \), simulate \(M \) on input \(\varepsilon \); if \(M \) accepts \(\varepsilon \), then accept.) Then \(\text{Accept}(\text{AcceptAcceptEmpty}) \) is undecidable, but \(\text{Accept}(M_{\text{Reject}}) = \emptyset \) is not. \(\blacksquare \)
To think about later. Which of the following are undecidable? How would you prove that?

1. **Accept\{\{\epsilon\}\} := \{(M) \mid M \text{ accepts only the string } \epsilon; \text{ that is, } \text{Accept}(M) = \{\epsilon\}\}**

Solution: Undecidable by Rice’s theorem. Let \(\mathcal{L} = \{\{\epsilon\}\} \) — the set containing one language, which contains one string, which is empty. Let \(M_\epsilon \) be a Turing machine with the transitions

\[
\delta(\text{start}, \square) = (\text{accept}, \cdot, \cdot)
\]

\[
\delta(\text{start}, a) = (\text{reject}, \cdot, \cdot) \quad \text{for all } a \in \Sigma.
\]

Clearly \(\text{Accept}(M_\epsilon) = \{\epsilon\} \in \mathcal{L} \). On the other hand, \(\text{Accept}(M_{\text{Reject}}) = \emptyset \notin \mathcal{L} \). ■

2. **Accept\{\emptyset\} := \{(M) \mid M \text{ does not accept any strings; that is, } \text{Accept}(M) = \emptyset\}**

Solution: Undecidable by Rice’s theorem. Let \(\mathcal{L} = \{\emptyset\} \) — the set containing one language, which contains no strings. We immediately have \(\text{Accept}(M_{\text{Reject}}) = \emptyset \in \mathcal{L} \) but \(\text{Accept}(M_{\text{Accept}}) = \Sigma^* \notin \mathcal{L} \). ■

3. **Accept=Reject := \{(M) \mid \text{Accept}(M) = \text{Reject}(M)\}**

Solution: Undecidable by definition-chasing. \(\text{Accept}(M) = \text{Reject}(M) \) if and only if \(M \) diverges on every input string. Thus, \(\text{Accept}=\text{Reject} = \text{NeverHalt} \), which is proved undecidable in the notes. ■

4. **Accept\neqReject := \{(M) \mid \text{Accept}(M) \neq \text{Reject}(M)\}**

Solution: Undecidable by closure properties. \(\text{Accept}(M) \neq \text{Reject}(M) \) if and only if \(M \) halts on at least input string. Thus, \(\text{NeverHalt} = \text{TMEncodings} \setminus \text{Accept}\neq\text{Reject} \), where \(\text{TMEncodings} \) is the language of all Turing machine encodings. \(\text{TMEncodings} \) is decidable, but \(\text{NeverHalt} \) is not. Thus, Corollary 3(d) in the undecidability notes implies that \(\text{Accept}\neq\text{Reject} \) is undecidable. ■

5. **Accept\cup\text{Reject} := \{(M) \mid \text{Accept}(M) \cup \text{Reject}(M) = \Sigma^*\}**

Solution: Undecidable by definition-chasing. \(\text{Accept}(M) \cup \text{Reject}(M) = \Sigma^* \) if and only if \(M \) halts on every input string. Thus, \(\text{Accept}\cup\text{Reject} = \text{NeverDiverge} \), which is proved undecidable in the notes. ■