1. Recall that a 5-coloring of a graph G is a function that assigns each vertex of G a “color” from the set \{0, 1, 2, 3, 4\}, such that for any edge uv, vertices u and v are assigned different “colors”. A 5-coloring is careful if the colors assigned to adjacent vertices are not only distinct, but differ by more than 1 (mod 5). Prove that deciding whether a given graph has a careful 5-coloring is NP-hard.

Solution: We prove that careful 5-coloring is NP-hard by reduction from the standard 5COLOR problem.

Given a graph G, we construct a new graph H by replacing each edge in G with a path of length three. I claim that H has a careful 5-coloring if and only if G has a (not necessarily careful) 5-coloring.

$\leftarrow\rightarrow$ Suppose G has a 5-coloring. Consider a single edge uv in G, and suppose $\text{color}(u) = a$ and $\text{color}(v) = b$. We color the path from u to v in H as follows:

- If $b = (a + 1) \text{ mod } 5$, use colors $(a, (a + 2) \text{ mod } 5, (a - 1) \text{ mod } 5, b)$.
- If $b = (a - 1) \text{ mod } 5$, use colors $(a, (a - 2) \text{ mod } 5, (a + 1) \text{ mod } 5, b)$.
- Otherwise, use colors (a, b, a, b).

In particular, every vertex in G retains its color in H. The resulting 5-coloring of H is careful.

$\leftarrow\rightarrow$ On the other hand, suppose H has a careful 5-coloring. Consider a path (u, x, y, v) in H corresponding to an arbitrary edge uv in G. There are exactly eight careful colorings of this path with $\text{color}(u) = 0$, namely: $(0, 2, 0, 2)$, $(0, 2, 0, 3)$, $(0, 2, 4, 1)$, $(0, 2, 4, 2)$, $(0, 3, 0, 3)$, $(0, 3, 0, 2)$, $(0, 3, 1, 3)$, $(0, 3, 1, 4)$. It follows immediately that $\text{color}(u) \neq \text{color}(v)$. Thus, if we color each vertex of G with its color in H, we obtain a valid 5-coloring of G.

Given G, we can clearly construct H in polynomial time. ■
2. Prove that the following problem is NP-hard: Given an undirected graph G, find any integer $k > 374$ such that G has a proper coloring with k colors but G does not have a proper coloring with $k - 374$ colors.

Solution: Let G' be the union of 374 copies of G, with additional edges between every vertex of each copy and every vertex in every other copy. Given G, we can easily build G' in polynomial time by brute force. Let $\chi(G)$ and $\chi(G')$ denote the minimum number of colors in any proper coloring of G, and define $\chi(G')$ similarly.

\implies Fix any coloring of G with $\chi(G)$ colors. We can obtain a proper coloring of G' with $374 \cdot \chi(G)$ colors, by using a distinct set of $\chi(G)$ colors in each copy of G. Thus, $\chi(G') \leq 374 \cdot \chi(G)$.

\iff Now fix any coloring of G' with $\chi(G')$ colors. Each copy of G in G' must use its own distinct set of colors, so at least one copy of G uses at most $\lfloor \chi(G') / 374 \rfloor$ colors. Thus, $\chi(G) \leq \lfloor \chi(G') / 374 \rfloor$.

These two observations immediately imply that $\chi(G') = 374 \cdot \chi(G)$. It follows that if k is an integer such that $k - 374 < \chi(G') \leq k$, then $\chi(G) = \chi(G') / 374 = \lfloor k / 374 \rfloor$. Thus, if we could compute such an integer k in polynomial time, we could compute $\chi(G)$ in polynomial time. But computing $\chi(G)$ is NP-hard! ■
3. A **bicoloring** of an undirected graph assigns each vertex a set of two colors. There are two types of bicoloring: In a weak bicoloring, the endpoints of each edge must use different sets of colors; however, these two sets may share one color. In a strong bicoloring, the endpoints of each edge must use distinct sets of colors; that is, they must use four colors altogether. Every strong bicoloring is also a weak bicoloring.

(a) Prove that finding the minimum number of colors in a weak bicoloring of a given graph is NP-hard.

Solution: It suffices to prove that deciding whether a graph has a weak bicoloring with three colors is NP-hard, using the following trivial reduction from the standard 3COLOR problem.

Let G be an arbitrary undirected graph. I claim that G has a proper 3-coloring if and only if G has a weak bicoloring with 3 colors.

- Suppose G has a proper coloring using the colors red, green, and blue. We can obtain a weak bicoloring of G using only the colors cyan, magenta, and yellow by recoloring each red vertex with \{magenta, yellow\}, recoloring each blue vertex with \{magenta, cyan\}, and recoloring each green vertex with \{yellow, cyan\}.
- Suppose G has a weak bicoloring using the colors cyan, magenta, yellow. Then we can obtain a proper 3-coloring of G by defining red = \{magenta, yellow\}, defining blue = \{magenta, cyan\}, and defining green = \{yellow, cyan\}.

More generally, for any integer k and any graph G, every weak k-bicoloring of G is also a proper $\binom{k}{2}$-coloring of G, and vice versa. \blacksquare
(b) Prove that finding the minimum number of colors in a strong bicoloring of a given graph is NP-hard.

Solution: It suffices to prove that deciding whether a graph has a strong bicoloring with five colors is NP-hard, using the following reduction from the standard 3Color problem.

Let G be an arbitrary undirected graph. We build a new graph from G as follows:

- Add a new vertex z and edges zv to every vertex v of G.
- Subdivide every edge of G into a path of length 3. (But don’t subdivide the new edges incident to z.)

I claim that G has a proper 3-coloring if and only if H has a strong bicoloring with five colors.

\Rightarrow Suppose G has a proper coloring with colors red, green, and blue. We obtain a strong bicoloring of H with colors cyan, magenta, yellow, white, and black as follows:

- Color vertex z \{white, black\}.
- Recolor the vertices of G by defining red = \{magenta, yellow\} and green = \{cyan, yellow\} and blue = \{magenta, cyan\}
- Color the new vertices on each red-green edge \{cyan, black\} and \{magenta, white\}, the new vertices on each red-blue edge \{cyan, white\} and \{yellow, black\}, and the new vertices on each blue-green edge \{yellow, black\} and \{magenta, white\}.

\Leftarrow On the other hand, suppose H has a strong bicoloring with colors cyan, magenta, yellow, white, and black. Without loss of generality, vertex z is colored \{white, black\}, and therefore each vertex of G is colored either \{magenta, yellow\} or \{cyan, yellow\} or \{magenta, cyan\}.

Consider an arbitrary edge uv of G. Suppose for the sake of argument that u and v are assigned the same pair of colors, without loss of generality \{magenta, yellow\}. Then the intermediate vertices on the corresponding path in H only use the colors cyan, white, and black. But this is impossible, because two adjacent vertices of H must use four distinct colors. Thus, u and v must be assigned distinct (but not disjoint!) pairs of colors.
We conclude that defining red = \{magenta, yellow\} and blue = \{magenta, cyan\} and green = \{yellow, cyan\} gives us a proper 3-coloring of \(G\).

We can easily construct \(H\) from \(G\) in polynomial time by brute force.

Five is the smallest number of colors for which strong bicoloring is NP-hard. A graph has a strong bicoloring with four colors if and only if it is bipartite, and a strong bicoloring with two or three colors if and only if it has no edges.