1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input:** A boolean circuit K with n inputs and one output.
- **Output:** True if there are input values $x_1, x_2, \ldots, x_n \in \{\text{True}, \text{False}\}$ that make K output True, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

- **Input:** A boolean circuit K with n inputs and one output.
- **Output:** Input values $x_1, x_2, \ldots, x_n \in \{\text{True}, \text{False}\}$ that make K output True, or None if there are no such inputs.

[Hint: You can use the magic box more than once.]

Solution: For any boolean circuit K with inputs x_1, \ldots, x_n, let $K \land x_i$ be the boolean circuit obtained from K by adding a new AND gate, with one input connected to the output of K and the other to the input x_i. Similarly, let $K \land \overline{x}_i$ be the boolean circuit obtained from K by adding a NOT gate, with input connected to x_i, and an AND gate, with one input connected to the output of K and the other to the NOT gate. For both of these circuits, the output of the new AND gate is the output of the circuit.

Suppose $\text{CircuitSat}(K)$ returns True if K is satisfiable and False otherwise. Then the following algorithm constructs a satisfying input assignment for K or correctly reports that no such assignment exists.

```python
def SatAssignment(K):
    if CircuitSat(K) = False
        return None
    for i ← 1 to n
        if CircuitSat(K ∧ x_i)
            K ← K ∧ x_i
            A[i] ← True
        else
            K ← K ∧ \overline{x}_i
            A[i] ← False
    return A[1..n]
```

The correctness of this algorithm follows by induction from the following observation:

Claim 1. The circuit $K \land x_i$ is satisfiable if and only if K has a satisfying assignment where $x_i = \text{True}$.

Proof: First, if $K \land x_i$ has a satisfying assignment, then that input assignment must satisfy K and must have $x_i = \text{True}$, because otherwise the AND gate would output False.

On the other hand, if K has a satisfying assignment where $x_i = \text{True}$, then that input assignment also satisfies $K \land x_i$, because that’s how AND gates do. □
The algorithm runs in polynomial time. Specifically, suppose \textsc{CircuitSat}(K) runs in \(O(N^c) \) time, where \(N \) is the total number of vertices and edges in dag representing \(K \). (The vertices consist of the inputs, the internal gates, and the output; the edges are the wires between those points.) Then \textsc{SatAssignment}(K) runs in time

\[
O(N^c) + \sum_{i=1}^{n} O((N + 5i)^c) \leq (N + 1) \cdot O((6N)^c) = O(N^{c+1}),
\]

which is polynomial in \(N \).
2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Prove that deciding whether a graph contains a tonian cycle is NP-hard.

Solution (duplicate the graph): I’ll describe a polynomial-time reduction from HAMILTONIANCYCLE. Let G be an arbitrary graph. Let H be a graph consisting of two disjoint copies of G, with no edges between them; call these copies G_1 and G_2. I claim that G has a Hamiltonian cycle if and only if H has a tonian cycle.

\implies Suppose G has a Hamiltonian cycle C. Let C_1 be the corresponding cycle in G_1. C_1 contains exactly half of the vertices of H, and thus is a tonian cycle in H.

\impliedby On the other hand, suppose H has a tonian cycle C. Because there are no edges between the subgraphs G_1 and G_2, this cycle must lie entirely within one of these two subgraphs. G_1 and G_2 each contain exactly half the vertices of H, so C must also contain exactly half the vertices of H, and thus is a Hamiltonian cycle in either G_1 or G_2. But G_1 and G_2 are just copies of G. We conclude that G has a Hamiltonian cycle.

Given G, we can construct H in polynomial time by brute force.

Solution (add n new vertices): I’ll describe a polynomial-time reduction from HAMILTONIANCYCLE. Let G be an arbitrary graph, and suppose G has n vertices. Let H be a graph obtained by adding n new vertices to G, but no additional edges. I claim that G has a Hamiltonian cycle if and only if H has a tonian cycle.

\implies Suppose G has a Hamiltonian cycle C. Then C visits exactly half the vertices of H, and thus is a tonian cycle in H.

\impliedby On the other hand, suppose H has a tonian cycle C. This cycle cannot visit any of the new vertices, so it must lie entirely within the subgraph G. Since G contains exactly half the vertices of H, the cycle C must visit every vertex of G, and thus is a Hamiltonian cycle in G.

Given G, we can construct H in polynomial time by brute force.
To think about later:

3. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if the total weight of edges in the cycle is at least half of the total weight of all edges in G. Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

Solution (two new vertices): I'll describe a polynomial-time a reduction from the Hamiltonian path problem. Let G be an arbitrary undirected graph (without edge weights). Let H be the edge-weighted graph obtained from G as follows:

- Add two new vertices s and t.
- Add edges from s and t every other vertex (including each other).
- Assign weight 1 to the edge st and weight 0 to every other edge.

The total weight of all edges in H is 1. Thus, a Hamiltonian cycle in H is heavy if and only if it contains the edge st. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a Hamiltonian path.

\implies First, suppose G has a Hamiltonian path from vertex u to vertex v. By adding the edges vs, st, and tu to this path, we obtain a Hamiltonian cycle in H. Moreover, this Hamiltonian cycle is heavy, because it contains the edge st.

\impliedby On the other hand, suppose H has a heavy Hamiltonian cycle. This cycle must contain the edge st, and therefore must visit all the other vertices in H contiguously. Thus, deleting vertices s and t and their incident edges from the cycle leaves a Hamiltonian path in G.

Given G, we can easily construct H in polynomial time by brute force.

Solution (smartass): I'll describe a polynomial-time a reduction from the standard Hamiltonian cycle problem. Let G be an arbitrary graph (without edge weights). Let H be the edge-weighted graph obtained from G by assigning each edge weight 0. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a Hamiltonian cycle.

\implies Suppose G has a Hamiltonian cycle C. The total weight of C is at least half the total weight of all edges in H, because $0 \geq 0/2$. So C is a heavy Hamiltonian cycle in H.

\impliedby Suppose H has a heavy Hamiltonian cycle C. By definition, C is also a Hamiltonian cycle in G.

Given G, we can easily construct H in polynomial time by brute force.