1. Describe and analyze an algorithm to compute the maximum total reward that the Antarctican SLUG race organizers could be forced to pay, given the array M as input.

Solution: Let $MaxR(i, j)$ be the maximum possible reward if only the snails numbered i through j are allowed to find mates. We need to compute $MaxR(1, n)$. This function obeys the following recurrence:

$$MaxR(i, j) = \begin{cases}
0 & \text{if } j \leq i \\
\max_{i < k \leq j} \left(MaxR(i+1,j) \right) & \text{otherwise}
\end{cases}$$

If there is at most one relevant snail, no reward is possible. Otherwise, we recursively consider all ways of pairing up snail i. If snail i never finds a mate, the maximum reward is $MaxR(i + 1, j)$. If snail i meets snail k, the organizers immediately pay $M[i, k]$, and the two slime trails split the remaining snails into two independent subproblems: snails $i + 1$ through $k - 1$, and snails $k + 1$ through j.

We can memoize this function into a two-dimensional array $MaxR[1..n, 0..n]$. Since each entry $MaxR[i, j]$ depends only on entries $MaxR[i', j']$ with $i' > i$, we can fill the array row by row from the bottom up (decreasing i), filling each row in arbitrary order. The resulting algorithm runs in $O(n^3)$ time.

```python
MaxReward(M[1..n, 1..n]):
for i ← n down to 1
    MaxR[i, i − 1] ← 0
    MaxR[i, i] ← 0
for j ← i + 1 to n  ⟨or whatever⟩
    MaxR[i, j] ← MaxR[i + 1, j]
    for k ← i + 1 to j
        tmp ← M[i, k] + MaxR[i + 1, k − 1] + MaxR[k + 1, j]
        if MaxR[i, j] < tmp
            MaxR[i, j] ← tmp
return MaxR[1, n]
```

Rubric: 10 points: standard dynamic programming rubric
2. Suppose you are given a NFA $M = (\{0, 1\}, Q, s, A, \delta)$ without ϵ-transitions and a binary string $w \in \{0, 1\}^*$. Describe and analyze an algorithm to determine whether M accepts w. Report the running time of your algorithm as a function of k (the number of states in M) and n (the length of the input string w).

Solution: For any state p and any index i, let $Accepts?(p, i)$ indicate whether the NFA would accept the suffix $w[i..n]$ if it started in state p, or equivalently, if the set $\delta^*(p, w[i..n])$ contains an accepting state. We need to compute $Accepts?(1, 1)$.

This function obeys the following recurrence:

$$Accepts?(p, i) = \begin{cases}
 \text{True} & \text{if } i > n \text{ and } p \in A \\
 \text{False} & \text{if } i > n \text{ and } p \notin A \\
 \bigvee_{q=1}^k (q \in \delta(p, w[i]) \land Accepts?(q, i+1)) & \text{otherwise}
\end{cases}$$

Rewriting this recurrence in terms of our input representation gives us

$$Accepts?(p, i) = \begin{cases}
 \text{Acc}[p] & \text{if } i > n \\
 \bigvee_{q=1}^k (\text{inDelta}[p, w[i], q] \land \text{Acc}(q, i+1)) & \text{otherwise}
\end{cases}$$

We can memoize this function into a two-dimensional array $Accepts?[1..k, 1..n]$, which we can fill column by column from right to left, filling each column in arbitrary order, in $O(k^2 n)$ time.

```plaintext
NFA-Accepts(k, Acc[1..k], inDelta[1..k, 0..1, 1..k]):
  for p ← 1 to k
    Accepts?[p, n + 1] ← Acc[p]
  for i ← n down to 1
    for p ← 1 to k
      Accepts?[p, i] ← False
      for q ← 1 to k
        if inDelta[p, w[i], q] and Accepts?[q, i + 1]
          Accepts?[p, i] ← True
  return Accepts?[1, 1]
```

Rubric: 10 points: standard dynamic programming rubric