- 1. Prove that the following languages are *not* regular.
 - (a) $\{0^m 1^n \mid m \text{ and } n \text{ are relatively prime}\}$

Solution: Consider the set F = {0^p | p is prime}.
Let x and y be arbitrary distinct strings in F.
Then x = 0ⁱ and y = 0^j for some prime integers i ≠ j.
We will set z = 1ⁱ. Note that i will be relatively prime with j but not with i.
Then xz = 0ⁱ1ⁱ ∉ L, because i is not relatively prime with i.

• But $yz = 0^{j}1^{i} \in L$, because *j* and *i* are relatively prime.

Thus, z is a distinguishing suffix for x and y.

We conclude that F is a fooling set for L.

Because F is infinite (since there are infinitely many primes), L cannot be regular.

Rubric: 3 points: standard fooling set rubric (scaled). This is not the only correct solution.

(b) $\{w \in (0+1)^* \mid 10^n 1^n \text{ for } n > 0 \text{ is a suffix of } w\}$

Solution: Consider the set $F = \{10^n | n > 0\}$. Let x and y be arbitrary distinct strings in F. Then $x = 10^i$ and $y = 10^j$ for some integers $i \neq j, i, j \ge 1$. Let $z = 1^j$. • $xz = 10^i 1^j \notin L$, because $i \neq j$. • $yz = 10^j 1^j \in L$. Thus, z is a distinguishing suffix for x and y. We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Rubric: 3 points: standard fooling set rubric (scaled). This is not the only correct solution.

- We are really reasoning about the language $L \cap \{10^n 1^n | n > 0\}$.
- We really do need $j \ge 1$, because $yz \notin L$ when j = 0.

(c) The set of all palindromes in $(0 + 1)^*$ whose length is divisible by 3.

Solution: Consider the set $F = (000)^* 111 = \{0^{3n}1^3 \mid n \ge 0\}$. Let x and y be arbitrary distinct strings in F. Then $x = 0^{3i} 1^3$ and $y = 0^{3j} 1^3$ for some integers $i \neq j$. Let $z = 0^{3i}$. • Then $xz = 0^{3i} 1^3 0^{3i}$ is a palindrome of length 3(2i + 1), so $xz \in L$. • But $yz = 0^{3j} 1^3 0^{3i}$ is not a palindrome (because $i \neq j$), so $yz \notin L$. Thus, z is a distinguishing suffix for x and y. We conclude that *F* is a fooling set for *L*. Because F is infinite, L cannot be regular. **Solution:** Consider the set $F = (000)^* 0 = \{0^{3n+1} \mid n \ge 0\}$. Let x and y be arbitrary distinct strings in F. Then $x = 0^{3i+1}$ and $y = 0^{3j+1}$ for some integers $i \neq j$. Let $z = 10^{3i+1}$. • Then $xz = 0^{3i+1} 10^{3i+1}$ is a palindrome of length 2(3i+1) + 1 = 3(2i+1), so $xz \in L$. • But $yz = 0^{3j+1} 10^{3i+1}$ is not a palindrome (because $i \neq j$), so $yz \notin L$. Thus, z is a distinguishing suffix for x and y. We conclude that *F* is a fooling set for *L*. Because F is infinite, L cannot be regular.

Rubric: 4 points: standard fooling set rubric (scaled). These are not the only correct solutions.

- 2. For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set).
 - (a) $\{0^a 1w 10^c \mid w \in \Sigma^*, (a \le |w| + c) \text{ and } (|w| \le a + c \text{ or } c \le a + |w|)\}$

Solution (fooling set): Not regular. Consider the set $F = 0^*$. Let x and y be arbitrary distinct strings in F. Then $x = 0^i$ and $y = 0^j$ for some integers $i \neq j, i, j \ge 0$. Without loss of generality, assume i < j. Let $z = 1^{i+2}$. • Then $xz = 0^i 1(1^i) 1 = 0^a 1(1^b) 10^c$ where (a, b, c) = (i, i, 0). We have $a = i \le i = b + c$ and $b = i \le i = a + c$, which implies $xz \in L$. • And $yz = 0^j 11^i 1 = 0^a 1^b 0^c$ where (a, b, c) = (j, i, 0). We have a = j > i = b + c, which implies $yz \notin L$. Thus, z is a distinguishing suffix for x and y. We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.

Rubric: $2\frac{1}{2}$ points: standard fooling set rubric (scaled). This is not the only correct fooling set argument. We really do need to assume i < j; otherwise, $yz \in L$.

The main idea of this solution is to impose additional structure that forces c = 0. We are really reasoning about the language $L \cap 0^* 1^* = \{0^a 1^b \mid a \le b\}$.

(b) $\{ \mathbf{0}^{a} w \mathbf{0}^{a} \mid w \in \Sigma^{+}, a > 0, |w| \ge 0 \}$

Solution: Regular. This is the language $0(0 + 1)^+0$.

- Consider an arbitrary string $u \in L$. By definition of *L*, we have $u = 0^a w 0^a$ for some integer a > 0 and string $w \in (0+1)^+$. Since $0^a = 00^{a-1} = 0^{a-1}0$, we have that $u = 0(0^{a-1}w0^{a-1})0$ where $(a-1) \ge 0$ and $w \in \Sigma^+$. It follows that $u \in 0(0+1)^+0$.
- On the other hand, consider an arbitrary string u ∈ 0(0 + 1)⁺0.
 We immediately have u = 0^aw0^a for integer a = 1 and string w ∈ (0 + 1)⁺.
 We conclude that u ∈ L.

Rubric: $2\frac{1}{2}$ points: $\frac{1}{2}$ for "regular" + 1 for regular expression + 1 for justification (= $\frac{1}{2}$ for "if" + $\frac{1}{2}$ for "only if"). This is more detail than necessary for full credit. This is not the only correct solution.

(c) $\left\{xww^R y \mid w, x, y \in \Sigma^+\right\}$

Solution: Regular. This is the language $(0+1)^+(00+11)(0+1)^+$ of all strings of length at least 4 that have the substring 00 or 11 preceded and succeeded by at least one symbol.

Let z be an arbitrary string in L. By definition, z = xww^Ry for some non-empty strings x, w and y. Because w ≠ ε, we have w = p • a for some string p and symbol a. The definition of reversal implies w^R = ap^R. Thus, z = xpaap^Ry contains substring aa. The remaining substrings xp and p^Ry contain at least one symbol each, because x and y are nonempty. We conclude that z ∈ (0 + 1)⁺(00 + 11)(0 + 1)⁺.

• On the other hand, let z be an arbitrary string in $(0 + 1)^+(00 + 11)(0 + 1)^+$. Then z = xaay for some symbol a and some nonempty strings x and y. Because $a = a^R$, we have $z = xaa^R y$, which implies $z \in L$.

Rubric: $2\frac{1}{2}$ points: $\frac{1}{2}$ for "regular" + 1 for regular expression + 1 for justification (= $\frac{1}{2}$ for "if" + $\frac{1}{2}$ for "only if"). This is more detail than necessary for full credit.

(d) $\{ww^R x y \mid w, x, y \in \Sigma^+\}$

Solution: Not regular. Consider the set $F = 1(00)^* 01$. Let u and v be arbitrary distinct strings in F. Then $u = 10^{2i+1}$ and $v = 10^{2j+1}$ for some non-negative integers $i \neq j$. Let $z = 10^{2i+1}111$. • Then $uz = 10^{2i+1} 110^{2i+1} 111 = ww^R xy$, where w = u and x, y = 1, so $uz \in L$. • For the sake of argument, suppose $vz = 10^{2j+1} 110^{2i+1} 111 \in L$. Then $vz = ww^R x y$ for some non-empty strings w, x and y. The first two symbols of vz are different, so |w| > 1. The prefix *w* begins with 10 (the first two symbols of vz). So its reversal w^R must end with 01. The substring 01 appears exactly twice in vz. So there are only two possibilities for the substring ww^R . - $ww^{R} = 10^{2j+1}$ is impossible because $|ww^{R}|$ must be even. - $ww^{R} = 10^{2j+1} 110^{2i+1}$ is impossible because ww^{R} must be a palindrome, and $i \neq j$. We have derived a contradiction, which implies that $vz \notin L$. Thus, *z* is a distinguishing suffix for *u* and *v*. We conclude that *F* is a fooling set for *L*. Because *F* is infinite, *L* cannot be regular. **Rubric:** 2¹/₂ points: standard fooling set rubric (scaled). This is not the only correct solution.

The main idea here is to impose additional structure that forces the prefix *w* to be arbitrarily long. We are really reasoning about the language

 $L \cap 1(00)^* 011(00)^* 0111 = \{10^n 110^n 111 \mid n \text{ is odd}\}.$