1. Let L be the set of all strings w in $\{A, B\}^*$ for which $(ABBA, w) \geq 2$.

(a) Give a regular expression for L, and briefly argue why your expression is correct.

Solution:

$$ (A + B)^* (ABBA) (A + B)^* (ABBA) (A + B)^* + (A + B)^* (ABBABBA) (A + B)^* $$

The first term describes all strings that contain at least two *disjoint* occurrences of the substring $ABBA$.

The second term describes all strings that contain the substring $ABBABBA$, and therefore either contain at least two *overlapping* occurrences of the substring $ABBA$.

(Neither subexpression attempts to match the first two or last two occurrences of $ABBA$, and the first subexpression does not attempt to match adjacent occurrences of the substring $ABBA$.)

Rubric: 5 points: standard regular expression rubric (scaled). This is not the only correct solution.

(b) Describe a DFA over the alphabet $\Sigma = \{A, B\}$ that accepts the language L.

Solution:

The nine states of the DFA have the following meanings:

- $-$: We have not seen the substrings $ABBA$, and we have not just read a non-empty prefix of $ABBA$ or $BAAB$. This is the start state.
- $-A$: We have not seen the substring $ABBA$, and we just read A.
- $-AB$: We have not seen the substring $ABBA$, and we just read A followed by B.
- $-ABB$: We have not seen the substring $ABBA$, and we just read A followed by B.
- $-A$: We have not seen the substring $ABBA$, and we just read A followed by B.
- $-AB$: We have not seen the substring $ABBA$, and we just read A followed by B.
- $-ABB$: We have not seen the substring $ABBA$, and we just read A followed by B.
- $-ABB$: We have not seen the substring $ABBA$, and we just read A followed by B.
B followed by another B.

- +A: We have seen the substring ABBA exactly once, and we just read A.
- +B: We have seen the substring ABBA exactly once, and we just read B, but this was not immediately preceded by either A or AB.
- +AB: We have seen the substring ABBA exactly once, and we just read A followed by B.
- +ABB: We have seen the substring ABBA exactly once, and we just read A followed by B followed by another B.
- ++: We have seen the substring ABBA at least twice. This is the only accepting state.

Rubric: 5 points: standard DFA rubric (scaled). This is not the only correct solution.
2. Let \(L \) denote the set of all strings \(w \in \{0,1\}^* \) that satisfy at most two of the following conditions:

- The number of times the substring \(01\) appears in \(w\) is not divisible by \(3\)\(^1\).
- The length of \(w\) is even.
- The binary value of \(w\) equals \(2 \pmod{3}\).

Formally describe a DFA with input alphabet \(\Sigma = \{0,1\}\) that accepts the language \(L\), by explicitly describing the states \(Q\), the start state \(s\), the accepting states \(A\), and the transition function \(\delta\).

Solution (formal description):

\[
Q = \{0,1\} \times \{0,1,2\} \times \{0,1\} \times \{0,1,2\} \\
\quad s = (1,0,0,0) \\
A = \{(a,b,c,d) \mid b = 0 \text{ or } c = 1 \text{ or } d \in \{0,1\}\} \\
\quad \delta((0,b,c,d),0) = (0,b,(c+1) \pmod{2},(2d) \pmod{3}) \\
\quad \delta((0,b,c,d),1) = (1,(b+1) \pmod{3},(c+1) \pmod{2},(2d+1) \pmod{3}) \\
\quad \delta((1,b,c,d),0) = (0,b,(c+1) \pmod{2},(2d) \pmod{3}) \\
\quad \delta((1,b,c,d),1) = (1,b,(c+1) \pmod{2},(2d+1) \pmod{3})
\]

The state \((a,b,c,d)\) indicates the following:

- \(a\) is the last symbol read by the DFA, or \(1\) if the DFA hasn’t read anything yet.
- \(b\) is the number of times the DFA has read the substring \(01\), modulo 3.
- \(c\) is the number of times the DFA has any symbol, modulo 2.
- \(d\) is the binary value of the string read so far, modulo 3.

\(^1\)Recall that \(a\) is divisible by \(b\) if and only if \(a \equiv 0 \pmod{b}\).
Solution (product construction): Our DFA M is the product of three smaller DFAs:

- The first DFA A accepts all strings in which the substring 01 appears $3k + 1$ or $3k + 2$ times for integer $k \geq 0$. Each state records the last symbol read (or 1 if nothing has been read yet), and whether the DFA has read $3k$ or $3k + 1$ or $3k + 2$ number of 01s.

- The second DFA B accepts all strings of even length. Each state records whether an even or odd number of symbols have been read so far.
• The third DFA C accepts all strings whose binary value equals $2 \pmod{3}$. Each state records the binary value $(\pmod{3})$ of the string read so far.

Each state of the product DFA M is a triple (a, b, c), where a is a state of A, b is a state of B, and c is a state of C. For example, the start state of M is $((1,0),0,0)$.

Finally, a state (a, b, c, d) of M is accepting if and only if $b = 0$ or $c = 1$ (the string has odd length) or $d \in \{0,1\}$ (the binary value equals 0 or 1 $(\pmod{3})$).

Rubric: 10 points: standard DFA rubric. These are not the only correct solutions.