THM. Every string is perfectly cromulent.

Proof: Let \(w \) be an arbitrary string. Assume, for every string \(x \) such that \(|x| < |w| \), that \(x \) is perfectly cromulent. There are two cases to consider.

- Suppose \(w = \varepsilon \).

Therefore, \(w \) is perfectly cromulent.

- Suppose \(w = ax \) for some symbol \(a \) and string \(x \). The induction hypothesis implies that \(x \) is perfectly cromulent.

Therefore, \(w \) is perfectly cromulent.

In both cases, we conclude that \(w \) is perfectly cromulent.

Lemma: For all strings \(w, y, z \),

\[
(w \cdot y) \cdot z = w \cdot (y \cdot z)
\]

Proof: Let \(w, y, z \) be arbitrary strings. Assume \((x \cdot y) \cdot z = x \cdot (y \cdot z) \) for all \(x \) s.t. \(|x| < |w| \), all \(y \), all \(z \).

Case 1: \(w = \varepsilon \)

\[
(w \cdot y) \cdot z = (\varepsilon \cdot y) \cdot z = \varepsilon \cdot (y \cdot z) = w \cdot (y \cdot z) \quad \text{[\(w = \varepsilon \)]}
\]

Case 2: \(w = ax \) for some symbol \(a \), string \(x \).

\[
(w \cdot y) \cdot z = (a \cdot x) \cdot y \cdot z = a \cdot (x \cdot y) \cdot z = a \cdot ((x \cdot y) \cdot z) \quad \text{[\(w = ax \)]}
\]
In both cases, \((w \cdot y) \cdot z = w \cdot (y \cdot z)\)

LANGUAGES

Language: set of strings over an alphabet

\(\Sigma = \{0, 1, 2\}\)

Examples of languages:

- \(\emptyset\) → EMPTY SET (no strings)
- \(\{\varepsilon\}\) → set containing the empty string

\(\emptyset\) \(\varepsilon\) NOT A LANGUAGE

\(\Sigma^*\): All strings over \(\Sigma\)

\(S^*\): All strings formed by concatenating symbols from set \(S\).

\(\Sigma^5\): All strings of length 5 formed by concatenating symbols from \(\Sigma\).
\[\Sigma = \{ \Sigma A, B, C, \ldots \} \]

\[\exists x \in \Sigma \text{ is a language} \]

\[L = L_1 \cup L_2 \]

\[L = L_1 \cap L_2 \]

\[L = \overline{A} = \Sigma^* \setminus A \]

\[L = \text{All python programs} \]

\[L = A \circ B = \{ x \circ y | x \in A, y \in B \} \]

\[\{ \text{OVER, UNDER} \} \circ \{ \text{EAT, PAY} \} \]

\[\Sigma \{ \text{a}, \text{b}, \text{c} \} \]

\[\phi \circ L = \phi \quad \exists \in \Sigma^* \circ L = L \]

Also,

\[L^* = \exists \in \Sigma^* \cup \cup L \cup \cup \ldots \]

\[w \in L^* \iff w = \varepsilon \text{ or } w = x \circ y \]

where \(x \in L \), \(y \in L^* \)

Is \(L^* \) always infinite?

What is \(L^* \) when \(L = \phi \)?

\[L^* = \Sigma \in \varepsilon \cup \phi \cup \phi \cup \phi \]

What about \(L = \{ \varepsilon \} \)?

\[L^* = \{ \varepsilon \} \cup \{ \varepsilon \} \cup \{ \varepsilon \} \cup \{ \varepsilon \} \cup \ldots = \varepsilon \in \varepsilon \]

\[L = \{ \varepsilon \} \Rightarrow L^* \text{ is infinite.} \]
Lemma 2.1. The following identities hold for all languages A, B, and C:

(a) $A \cup B = B \cup A$.
(b) $(A \cup B) \cup C = A \cup (B \cup C)$.
(c) $\emptyset \cdot A = A \cdot \emptyset = \emptyset$.
(d) $\{\varepsilon\} \cdot A = A \cdot \{\varepsilon\} = A$.
(e) $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.
(f) $A \cdot (B \cup C) = (A \cdot B) \cup (A \cdot C)$.
(g) $(A \cup B) \cdot C = (A \cdot C) \cup (B \cdot C)$.

Lemma 2.2. The following identities hold for every language L:

(a) $L^* = \{\varepsilon\} \cup L^* = L^* \cdot L^* = (L \cup \{\varepsilon\})^* = (L \setminus \{\varepsilon\})^* = \{\varepsilon\} \cup L \cup (L^+ \cdot L^+)$.
(b) $L^+ = L \cdot L^* = L^* \cdot L = L^+ \cdot L^* = L^* \cdot L^+ = L \cup (L^+ \cdot L^+)$.
(c) $L^+ = L^*$ if and only if $\varepsilon \in L$.

Lemma 2.3 (Arden’s Rule). For any languages A, B, and L such that $L = A \cdot L \cup B$, we have $A^* \cdot B \subseteq L$. Moreover, if A does not contain the empty string, then $L = A \cdot L \cup B$ if and only if $L = A^* \cdot B$.

Regular Languages

L is regular means

- either $L = \emptyset$
- or $L = \varepsilon w \varepsilon$ for some string w

if-then-else

- or $L = A \cup B$ for regular A, B

Sequence of lines

- or $L = A \cdot B$ for regular A, B

Loop

- or $L = A^*$ for regular A
REGULAR EXPRESSIONS

0 + 10* = 00* U 01* U 00* U 1* U 1* 0

0, 1, 10, 100,

Eg: The language of alternating 0s and 1s.
strings in language
\(\varepsilon, 0101, 0, 1, 10, 101, \ldots \)
strings not in language
11, 0010, 01101

Regular Expression: \((\varepsilon + 1)(01)^* (\varepsilon + 0)\)
A regular expression tree for $a^*a + a^*1(10^*1 + 01^*0)^*10^*$

Proof: Let R be an arbitrary regular expression.
Assume that **every regular expression smaller than** R **is perfectly cromulent.**
There are five cases to consider.

- Suppose $R = \emptyset$.

 Therefore, R is perfectly cromulent.

- Suppose R is a single string.

 Therefore, R is perfectly cromulent.

- Suppose $R = S + T$ for some regular expressions S and T.
The induction hypothesis implies that S and T are perfectly cromulent.

 Therefore, R is perfectly cromulent.

- Suppose $R = S \cdot T$ for some regular expressions S and T.
The induction hypothesis implies that S and T are perfectly cromulent.

 Therefore, R is perfectly cromulent.

- Suppose $R = S^*$ for some regular expression S.
The induction hypothesis implies that S is perfectly cromulent.

 Therefore, R is perfectly cromulent.

In all cases, we conclude that w is perfectly cromulent. \(\square\)