HW10: out later today (due next Tue 8pm)

HW11

--- So FAR ---

Part 1: Models of Computation

Part 2: Design Efficient Algorithms

Part 3: Problems for which no algorithms exist

Problems for which no efficient algorithms exist.

How to Argue that solutions are unlikely to exist?

Template:

* Suppose you're trying to figure out if there exists an efficient algorithm for problem Y.

* You have a channel to God.

* God will only tell you whether a different problem X is hard.

If Y has a solution, then so does X.

God told you X is hard.

⇒ Y is also hard.
CONDITIONAL RESULTS

DECISION PROBLEMS

Problem. \(\Pi \) : Collection of instances (strings).

For each instance, answer is YES or NO.

Answer function \(f_\Pi : \Sigma^* \rightarrow \{0, 1\} \) where

\[
\begin{align*}
 f_\Pi(I) &= 1 \quad \text{iff } I \text{ is YES instance} \\
 f_\Pi(I) &= 0 \quad \text{iff } I \text{ is NO instance}
\end{align*}
\]

\[L_\Pi = \{ I \mid f_\Pi(I) = 1 \} \]

\(<x>\) refers to an encoding of \(x \) in some format.

Graph \(G \), \(<G>\) is an encoding of the graph as a string.

\(G = (V, E), s, t, B \) length of shortest path from \(s \) to \(t \) in \(G \).

Instance \(= <G, s, t, B> \).

REDUCTION BETWEEN LANGUAGES.

For two languages \(L_x, L_y \).

A reduction FROM \(L_x \) TO \(L_y \) is an algorithm:

input : \(w \in \Sigma^* \)

output : \(w' \in \Sigma^* \)

such that \(w \in L_y \iff w \in L_x \).
R: Reduction (from) \(X \rightarrow Y \) \(X \leq Y \)

Given \(A_y \): Algorithm for \(Y \),
Build \(A_x \): Algorithm for \(X \) (that uses \(A_y \))

\[R \] has running time \(R(n) \) where \(n \) is size of input to \(R \)
\(A_y \) has running time \(O(n) \) where \(n \) is size of input to \(A_y \)
\(A_x \) has running time \(\frac{R(n) + 0(R(n))}{n^2 + n^3} \)

Suppose \(|I_x| = n \). First run \(R \), takes \(R(n) \).
Next run \(A_y \), which takes \(O(|I_x|) \leq O(R(n)) \)

If \(R \) is polynomial-time and \(A_y \) is also polynomial time,
then \(A_x \) is polynomial time.

If \(R \) is polynomial time and makes polynomially many accesses to \(A_y \), and \(A_y \) is also polynomial time,
then \(A_x \) is polynomial time.
Lemma (1) If \(X \leq Y \) and \(Y \) has an algorithm,
then \(X \) has an algorithm.

(2) If \(X \leq_Y \) and \(Y \) has a polynomial-time algorithm,
poly-time reduction then \(X \) has a polynomial-time algorithm.

(3) If \(X \leq Y \) and \(X \) does not have an algorithm
\(Y \) does not have an algorithm.

(4) If \(X \leq_{p} Y \) and \(X \) does not have a poly-time algorithm
\(Y \) does not have a polynomial-time algorithm.

\[
\begin{align*}
X \leq Y, & \quad Y \leq Z \implies X \leq Z \\
X \leq_{(p)} Y, & \quad Y_{(p)} \leq Z \implies X \leq_{(p)} Z
\end{align*}
\]

\(X \leq Y \implies Y \leq X \)

Prove hardness of new problem \(Y \),
based on known hardness of
well-known problem \(X \).

\[
\begin{align*}
X \leq Y & \quad \text{You know: } X \text{ is hard.} \\
\text{and } X \leq Y & \quad \text{and } X \leq Y \\
\implies Y \text{ is hard.}
\end{align*}
\]
How to prove $X \leq Y$.

Give $R(x) \rightarrow y$

Such that I_x is YES instance of x

$\iff I_y$ is YES instance of y

$I_x \text{ is YES}_x \Rightarrow I_y \text{ is YES}_y$

$I_y \text{ is YES}_y \Rightarrow I_x \text{ is YES}_x$

How to prove $X \leq_P Y$?

In addition to proving that

$I_x \text{ is YES}_x \iff I_y \text{ is YES}_y$

Also prove that R is polynomial time.
EXAMPLES OF REDUCTIONS

\[G = (V, E) \]

INDEPENDENT SET: \(S \subseteq V \) such that no 2 vertices in \(S \) are connected by an edge.

\[\langle G, k \rangle \]

Does \(G \) have an INDEPENDENT SET of size \(\geq k \)?

CLIQUE: Set \(S \subseteq V \) s.t. every pair of vertices in \(S \) is connected by an edge.

\[\langle G, k \rangle \]

\(G \) has a clique of size \(\geq k \)?
\[G = (G, k) \]

Does \(G \) have an independent set of size \(\geq k \)?

\(R \): Given \(G \), computes \(\overline{G} \)

- If \((u, v) \in \overline{G} \) \(\Leftrightarrow \) \((u, v) \) is not an edge in \(G \).

To prove: \(I_x \) is a YES instance of INDEPENDENT SET \(\Leftrightarrow I_y \) is a YES instance of CLIQUE.
\(G \) has an independent set of size \(\geq k \)

\(\implies \) \(\overline{G} \) has a clique of size \(\geq k \).

A set \(S \) is an independent set in \(G \)

\(\implies \) no 2 vertices in \(S \) have an edge between them in \(G \).

\(\implies \) every pair of vertices in \(S \) have an edge between them in \(\overline{G} \).

\(\implies \) \(S \) is a clique in \(\overline{G} \).

VERTEX COVER

Let \(G = (V, E) \) be a graph.

\(S \) is an independent set \(\iff \forall S \) is a vertex cover.
INDEPENDENT SET \leq VERTEX COVER

Consider any $uv \in E$

$u \notin S$ or $v \notin S$ \hspace{1cm} (S is indep set)

$\Rightarrow u \in V \setminus S$ or $v \in V \setminus S$

$\Rightarrow V \setminus S$ is a vertex cover.

$V \setminus S$ is V.C.

Consider any $u, v \in S$.

$\Rightarrow uv$ is not an edge of G else $V \setminus S$ does not cover uv

$\Rightarrow S$ is an independent set.

$(G, k) \in$ INDSET $\iff (G', n-k) \in_{yes} VCOV$

INDSET \leq_p VCOV

VCOV \leq_p INDSET