WhateverFirstSearch(s):

- put s into the bag
- while the bag is not empty
 - take v from the bag
 - if v is unmarked
 - mark v
 - for each edge vw
 - put w into the bag

Running time?

Each vertex is marked at most once
Each edge is put into bag at most twice

$$O(V + E) \text{ time} = O(V^2) \text{ time}$$

Connected $\Rightarrow E \geq V-1 \Rightarrow V = O(E) \Rightarrow O(E)$ time

Shortest path tree

Bag = stack
Depth-First search

Bag = queue
Breadth-First search
WFSALL(G):
for all vertices v
 unmark v
for all vertices v
 if v is unmarked
 WHATEVERFIRSTSEARCH(v)

COUNTCOMPONENTS(G):
$\text{count} \leftarrow 0$
for all vertices v
 unmark v
for all vertices v
 if v is unmarked
 $\text{count} \leftarrow \text{count} + 1$
 WHATEVERFIRSTSEARCH(v)
return count

COUNTANDLABEL(G):
$\text{count} \leftarrow 0$
for all vertices v
 unmark v
for all vertices v
 if v is unmarked
 $\text{count} \leftarrow \text{count} + 1$
 LABELONE(v, count)
return count

((Label one component))

LABELONE(v, count):
while the bag is not empty
 take v from the bag
 if v is unmarked
 mark v
 $\text{comp}(v) \leftarrow \text{count}$
 for each edge vw
 put w into the bag

v.comp
Depth First Search

DFS(v):
- mark v
- PreVisit(v)
 - for every edge v→w
 - if w is unmarked
 - parent(w) = v
 - DFS(w)
- PostVisit(v)

DFSAll(G):
- Preprocess(G)
 - for all vertices u
 - unmark u
- for all vertices v
 - if v is unmarked
 - DFS(v)
DFS(v):
- mark \(v \)
- \(v.pre \leftarrow \text{clock}++ \)
- for every edge \(v \rightarrow w \)
 - if \(w \) is unmarked
 - \(\text{parent}(w) \leftarrow v \)
 - \(\text{DFS}(w) \)
- \(v.post \leftarrow \text{clock}++ \)

DFSAll(G):
- \(\text{clock} \leftarrow 0 \)
- for all vertices \(v \)
 - unmark \(v \)
 - for all vertices \(v \)
 - if \(v \) is unmarked
 - \(\text{DFS}(w) \)

Sort by \(v.pre \) — preorder
Sort by \(v.post \) — postorder

Lemma: \(G \) has a directed cycle iff for some edge \(v \rightarrow w \) we have \(v.post < w.post \)

Proof: Let \(v \rightarrow w \) be an arbitrary edge

3 cases:

1. **DFS(v) called before DFS(w)**
 - \(v.pre < w.pre < w.post < v.post \)

2. **DFS(w) called before DFS(v)**
 - and \(w \) can reach \(v \)
 - Directed Cycle!
 - \(w.pre < v.pre < v.post < w.post \)

3. **DFS(w) before DFS(v)**
 - \(w \) cannot reach \(v \)
 - \(w.pre < w.post < v.pre < v.post \)

Is \(v.post > w.post \) for all \(v \rightarrow w \) then \(G \) is a dag
see "DAG" or "dag" => think "topological sort"

Order the vertices s.t. \(\text{num}(v) < \text{num}(w) \) for all \(v \rightarrow w \)

\(G \) is a dag \(\Rightarrow \) top. order exists

\(\text{num}(v) = 2V - v.\text{post} \)

Top Sort(G)

Preprocess \(G \): Clock \(\leftarrow \) V (# vertices)
Previsit \(v \): return
Postvisit \(v \): Top[
\[\text{clock}--1\] \(\leftarrow \) v

Dynamic Programming !!

\(LP(v) = \text{length of the longest path in } G \) from \(v \) to \(t \)

\[
LP(v) = \begin{cases}
0 & \text{if } v = t \\
\max_{v \rightarrow w} \{ 1 + LP(w) \} & \text{if } v \neq t
\end{cases}
\]

Memoize? Use the graph? \(v.\text{LP} \)
Eval order? reverse top. order = postorder
Running time? \(\mathcal{O}(V+E) \)