Proving that a problem X is NP-hard requires several steps:

- Choose a problem Y that you already know is NP-hard (because we told you so in class).
- Describe an algorithm to solve Y, using an algorithm for X as a subroutine. Typically this algorithm has the following form: Given an instance of Y, transform it into an instance of X, and then call the magic black-box algorithm for X.
- **Prove** that your algorithm is correct. This always requires two separate steps, which are usually of the following form:
 - **Prove** that your algorithm transforms “good” instances of Y into “good” instances of X.
 - **Prove** that your algorithm transforms “bad” instances of Y into “bad” instances of X. Equivalently: Prove that if your transformation produces a “good” instance of X, then it was given a “good” instance of Y.
- Argue that your algorithm for Y runs in polynomial time. (This is usually trivial.)

1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

 - **INPUT**: A boolean circuit K with n inputs and one output.
 - **OUTPUT**: TRUE if there are input values $x_1, x_2, \ldots, x_n \in \{\text{TRUE}, \text{FALSE}\}$ that make K output TRUE, and FALSE otherwise.

 Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

 - **INPUT**: A boolean circuit K with n inputs and one output.
 - **OUTPUT**: Input values $x_1, x_2, \ldots, x_n \in \{\text{TRUE}, \text{FALSE}\}$ that make K output TRUE, or NONE if there are no such inputs.

 [Hint: You can use the magic box more than once.]

2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

 A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Prove that deciding whether a graph contains a tonian cycle is NP-hard.

To think about later:

3. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if the total weight of edges in the cycle is at least half of the total weight of all edges in G. Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.
A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.