1. Every year, as part of its annual meeting, the Antarctic Snail Lovers of Upper Glacierville hold a Round Table Mating Race. Several high-quality breeding snails are placed at the edge of a round table. The snails are numbered in order around the table from 1 to \(n \). During the race, each snail wanders around the table, leaving a trail of slime behind it. The snails have been specially trained never to fall off the edge of the table or to cross a slime trail, even their own. If two snails meet, they are declared a breeding pair, removed from the table, and whisked away to a romantic hole in the ground to make little baby snails. Note that some snails may never find a mate, even if the race goes on forever.

```
1 2 3 4 5 6 7 8
 8 1 5  2 6 3 4 7
```


For every pair of snails, the Antarctic SNUG race organizers have posted a monetary reward, to be paid to the owners if that pair of snails meets during the Mating Race. Specifically, there is a two-dimensional array \(M[1..n, 1..n] \) posted on the wall behind the Round Table, where \(M[i, j] = M[j, i] \) is the reward to be paid if snails \(i \) and \(j \) meet. Rewards may be positive, negative, or zero.

Describe and analyze an algorithm to compute the maximum total reward that the organizers could be forced to pay, given the array \(M \) as input.
2. Suppose you are given a NFA $M = (\{0, 1\}, Q, s, A, \delta)$ without ϵ-transitions and a binary string $w \in \{0, 1\}^*$. Describe and analyze an efficient algorithm to determine whether M accepts w. Concretely, the input NFA M is represented as follows:

- $Q = \{1, 2, \ldots, k\}$ for some integer k.
- The start state s is state 1.
- Accepting states are represented by a boolean array $Acc[1..k]$, where $Acc[q] = True$ if and only if $q \in A$.
- The transition function δ is represented by a boolean array $inDelta[1..k, \emptyset..1, 1..k]$, where $inDelta[p, a, q] = True$ if and only if $q \in \delta(p, a)$.

Your input consists of the integer k, the array $Acc[1..k]$, the array $inDelta[1..k, \emptyset..1, 1..k]$, and the input string $w[1..n]$. Your algorithm should return $true$ if M accepts w, and $false$ if M does not accept w. Report the running time of your algorithm as a function of k (the number of states in M) and n (the length of w). [Hint: Do not convert M to a DFA!!]
Solved Problems

3. A string \(w \) of parentheses \((\) and \(\)) and brackets \([\) and \(\]) is balanced if and only if \(w \) is generated by the following context-free grammar:

\[
S \rightarrow \varepsilon \mid (S) \mid [S] \mid SS
\]

For example, the string \(w = ([()][()])([()])(()())(()) \) is balanced, because \(w = x y \), where

\[
x = ([()][()]) \quad \text{and} \quad y = () .
\]

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array \(A[1..n] \), where \(A[i] \in \{(,),[\] \}) for every index \(i \).

Solution: Suppose \(A[1..n] \) is the input string. For all indices \(i \) and \(k \), let \(LBS(i,k) \) denote the length of the longest balanced subsequence of the substring \(A[i..k] \). We need to compute \(LBS(1,n) \). This function obeys the following recurrence:

\[
LBS(i,j) = \begin{cases}
0 & \text{if } i \geq k \\
\max \left\{ \begin{array}{l}
2 + LBS(i+1,k-1) \\
\max_{j=1}^{k-1} \left(LBS(i,j) + LBS(j+1,k) \right) \\
\max_{j=1}^{k-1} \left(LBS(i,j) + LBS(j+1,k) \right)
\end{array} \right. & \text{if } A[i] \sim A[k] \\
0 & \text{otherwise}
\end{cases}
\]

Here \(A[i] \sim A[k] \) indicates that \(A[i] \) is a left delimiter and \(A[k] \) is the corresponding right delimiter: Either \(A[i] = (\) and \(A[k] =) \), or \(A[i] = [\) and \(A[k] =] \).

We can memoize this function into a two-dimensional array \(LBS[1..n,1..n] \). Because each entry \(LBS[i,j] \) depends only on entries in later rows or earlier columns (or both), we can evaluate this array row-by-row from bottom up in the outer loop, scanning each row from left to right in the inner loop. The resulting algorithm runs in \(O(n^3) \) time.

```plaintext
LONGEST_BALANCED_SUBSEQUENCE(A[1..n]):
for i ← n down to 1
   LBS[i, i] ← 0
for k ← i + 1 to n
   if A[i] ∼ A[k]
      LBS[i, k] ← LBS[i + 1, k − 1] + 2
   else
      LBS[i, k] ← 0
   for j ← i to k − 1
      LBS[i, k] ← max{LBS[i, k], LBS[i, j] + LBS[j + 1, k]}
return LBS[1, n]
```

Rubric: 10 points, standard dynamic programming rubric
4. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with the company president at the root. The all-knowing oracles in Human Resources have assigned a real number to each employee measuring how “fun” the employee is. In order to keep things social, there is one restriction on the guest list: An employee cannot attend the party if their immediate supervisor is also present. On the other hand, the president of the company must attend the party, even though she has a negative fun rating; it’s her company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of the “fun” ratings of the guests. The input to your algorithm is a rooted tree \(T \) describing the company hierarchy, where each node \(v \) has a field \(v.\text{fun} \) storing the “fun” rating of the corresponding employee.

Solution (two functions): We define two functions over the nodes of \(T \).

- **MaxFunYes**\((v)\) is the maximum total “fun” of a legal party among the descendants of \(v \), where \(v \) is definitely invited.
- **MaxFunNo**\((v)\) is the maximum total “fun” of a legal party among the descendants of \(v \), where \(v \) is definitely not invited.

We need to compute **MaxFunYes**\((\text{root})\). These two functions obey the following mutual recurrences:

\[
\begin{align*}
\text{MaxFunYes}(v) &= v.\text{fun} + \sum_{\text{children } w \text{ of } v} \text{MaxFunNo}(w) \\
\text{MaxFunNo}(v) &= \sum_{\text{children } w \text{ of } v} \max\{\text{MaxFunYes}(w), \text{MaxFunNo}(w)\}
\end{align*}
\]

(These recurrences do not require separate base cases, because \(\sum \emptyset = 0 \).) We can memoize these functions by adding two additional fields \(v.\text{yes} \) and \(v.\text{no} \) to each node \(v \) in the tree. The values at each node depend only on the values at its children, so we can compute all \(2n \) values using a postorder traversal of \(T \).

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s the most natural way to traverse trees!\(^a\)) The algorithm spends \(O(1) \) time at each node, and therefore runs in \(O(n) \) time altogether.

\(^a\)A naïve recursive implementation would run in \(O(\phi^n) \) time in the worst case, where \(\phi = (1 + \sqrt{5})/2 \approx 1.618 \) is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.
Solution (one function): For each node v in the input tree T, let $\text{MaxFun}(v)$ denote the maximum total “fun” of a legal party among the descendants of v, where v may or may not be invited.

The president of the company must be invited, so none of the president’s “children” in T can be invited. Thus, the value we need to compute is

$$\text{root.fun} + \sum_{\text{grandchildren } w \text{ of root}} \text{MaxFun}(w).$$

The function MaxFun obeys the following recurrence:

$$\text{MaxFun}(v) = \max \left\{ v.\text{fun} + \sum_{\text{grandchildren } x \text{ of } v} \text{MaxFun}(x), \sum_{\text{children } w \text{ of } v} \text{MaxFun}(w) \right\}$$

(This recurrence does not require a separate base case, because $\sum \emptyset = 0$.) We can memoize this function by adding an additional field $v.\text{maxFun}$ to each node v in the tree. The value at each node depends only on the values at its children and grandchildren, so we can compute all values using a postorder traversal of T.

\begin{align*}
\text{BestParty}(T): \quad & \text{ComputeMaxFun}(T.\text{root}) \\
& \text{party} \leftarrow T.\text{root}.\text{fun} \\
& \text{for all children } w \text{ of } T.\text{root} \\
& \quad \text{for all children } x \text{ of } w \\
& \quad \quad \text{party} \leftarrow \text{party} + x.\text{maxFun} \\
& \text{return party}
\end{align*}

\begin{align*}
\text{ComputeMaxFun}(v): \quad & \text{yes} \leftarrow v.\text{fun} \\
& \text{no} \leftarrow 0 \\
& \text{for all children } w \text{ of } v \\
& \quad \text{ComputeMaxFun}(w) \\
& \quad \text{no} \leftarrow \text{no} + w.\text{maxFun} \\
& \quad \text{for all children } x \text{ of } w \\
& \quad \quad \text{yes} \leftarrow \text{yes} + x.\text{maxFun} \\
& \quad \text{v.\text{maxFun}} \leftarrow \max\{\text{yes, no}\}
\end{align*}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s the most natural way to traverse trees!\(^a\))

The algorithm spends $O(1)$ time at each node (because each node has exactly one parent and one grandparent) and therefore runs in $O(n)$ time altogether.

\(^a\)Like the previous solution, a direct recursive implementation would run in $O(\phi^n)$ time in the worst case, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solutions.