This is a “core dump” of potential questions for Midterm 1. This should give you a good idea of the types of questions that we will ask on the exam—in particular, there will be a series of True/False questions—but the actual exam questions may or may not appear in this handout. This list intentionally includes a few questions that are too long or difficult for exam conditions; most of these are indicated with a *star.

Questions from Jeff’s past exams are labeled with the semester they were used—〈S14〉 or 〈F19〉, for example. Questions from this semester’s homework (either written or on PrairieLearn) are labeled 〈HW〉. Questions from this semester’s labs are labeled 〈Lab〉. Some unflagged questions may have been used in exams by other instructors.

How to Use These Problems

Solving every problem in this handout is not the best way to study for the exam. Memorizing the solutions to every problem in this handout is the absolute worst way to study for the exam.

What we recommend instead is to work on a sample of the problems. Choose one or two problems at random from each section and try to solve them from scratch under exam conditions—by yourself, in a quiet room, with a 30-minute timer, without your notes, without the internet, and if possible, even without your cheat sheet. If you’re comfortable solving a few problems in a particular section, you’re probably ready for that type of problem on the exam. Move on to the next section.

Discussing problems with other people (in your study groups, in the review sessions, in office hours, or on Piazza) and/or looking up old solutions can be extremely helpful, but only after you have (1) made a good-faith effort to solve the problem on your own, and (2) you have either a candidate solution or some idea about where you’re getting stuck.

If you find yourself getting stuck on a particular type of problem, try to figure out why you’re stuck. Do you understand the problem statement? Are you stuck on choosing the right high-level approach, are you stuck on the technical details, or are you struggling to express your ideas clearly?

Similarly, if feedback suggests that your solutions to a particular type of problem are incorrect or incomplete, try to figure out what you missed. For induction proofs: Are you sure you have the right induction hypothesis? Are your cases obviously exhaustive? For regular expressions, DFAs, NFAs, and context-free grammars: Is your solution both exclusive and exhaustive? Did you try a few positive examples and a few negative examples? For fooling sets: Are you imposing enough structure? Are x and y really arbitrary strings from F? For language transformations: Are you transforming in the right direction? Are you using non-determinism correctly? Do you understand the formal notation for DFAs and NFAs?

Remember that your goal is not merely to “understand”—or worse, to remember—the solution to any particular problem, but to become more comfortable with solving a certain type of problem on your own. Understanding is a seductive trap; aim for mastery. If you can identify specific steps that you find problematic, read more about those steps, focus your practice on those steps, and try to find helpful information about those steps to write on your cheat sheet. Then work on the next problem!
Induction on Strings

Give complete, formal inductive proofs for the following claims. Your proofs must reply on the formal recursive definitions of the relevant string functions, not on intuition. Recall that the concatenation \(\cdot \) and length \(|\cdot| \) functions are formally defined as follows:

\[
\begin{align*}
w \cdot y & := \begin{cases}
y & \text{if } w = \epsilon \\
a \cdot (x \cdot y) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^* \end{cases} \\
|w| & := \begin{cases}
0 & \text{if } w = \epsilon \\
1 + |x| & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^* \end{cases}
\end{align*}
\]

1.1 The reversal \(w^R \) of a string \(w \) is defined recursively as follows:

\[
w^R := \begin{cases}
\epsilon & \text{if } w = \epsilon \\
x^R \cdot a & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases}
\]

(a) Prove that \((w \cdot x)^R = x^R \cdot w^R\) for all strings \(w \) and \(x \). \(\langle\text{Lab}\rangle\)
(b) Prove that \((w^R)^R = w\) for every string \(w \). \(\langle\text{Lab}\rangle\)
(c) Prove that \(|w| = |w^R|\) for every string \(w \). \(\langle\text{Lab}\rangle\)

1.2 Let \#(a, w) denote the number of times symbol \(a \) appears in string \(w \). For example, \#(X, WTF374) = 0 and \#(0, 0000101010010100) = 12.

(a) Give a formal recursive definition of \#(a, w). \(\langle\text{Lab}\rangle\)
(b) Prove that \#(a, w \cdot z) = \#(a, w) + \#(a, z)\) for all symbols \(a \) and all strings \(w \) and \(z \). \(\langle\text{Lab}\rangle\)
(c) Prove that \#(a, w^R) = \#(a, w)\) for all symbols \(a \) and all strings \(w \), where \(w^r \) denotes the reversal of \(w \). \(\langle\text{Lab}\rangle\)

1.3 For any string \(w \) and any non-negative integer \(n \), let \(w^n \) denote the string obtained by concatenating \(n \) copies of \(w \); more formally, define

\[
w^n := \begin{cases}
\epsilon & \text{if } n = 0 \\
w \cdot w^{n-1} & \text{otherwise}
\end{cases}
\]

For example, \((\text{BLAH})^5 = \text{BLAHBLAHBLAHBLAHBLAH}\) and \(\epsilon^{374} = \epsilon\).

(a) Prove that \(w^m \cdot w^n = w^{m+n}\) for every string \(w \) and all non-negative integers \(n \) and \(m \).
(b) Prove that \((w^m)^n = w^{mn}\) for every string \(w \) and all non-negative integers \(n \) and \(m \).
(c) Prove that \(|w^n| = n|w|\) for every string \(w \) and every integer \(n \geq 0 \).
(d) Prove that \((w^n)^R = (w^R)^n\) for every string \(w \) and every integer \(n \geq 0 \).
1.4 Consider the following pair of mutually recursive functions:

\[
\begin{align*}
\text{evens}(w) := & \begin{cases}
\epsilon & \text{if } w = \epsilon \\
\text{odds}(x) & \text{if } w = ax
\end{cases} \\
\text{odds}(w) := & \begin{cases}
\epsilon & \text{if } w = \epsilon \\
a \cdot \text{evens}(x) & \text{if } w = ax
\end{cases}
\end{align*}
\]

For example, \(\text{evens}(0001101) = 010 \) and \(\text{odds}(0001101) = 0011 \).

(a) Prove the following identity for all strings \(w \) and \(x \): \((\text{HW})\)

\[
\text{evens}(w \cdot x) = \begin{cases}
\text{evens}(w) \cdot \text{evens}(x) & \text{if } |w| \text{ is even}, \\
\text{evens}(w) \cdot \text{odds}(x) & \text{if } |w| \text{ is odd}.
\end{cases}
\]

(b) State and prove a similar identity for \(\text{odds}(w \cdot x) \).

(c) Prove the following identity for all strings \(w \):

\[
\text{evens}(w^R) = \begin{cases}
(\text{evens}(w))^R & \text{if } |w| \text{ is odd}, \\
(\text{odds}(w))^R & \text{if } |w| \text{ is even}.
\end{cases}
\]

(d) Prove that \(|w| = |\text{evens}(w)| + |\text{odds}(w)| \) for every string \(w \).

1.5 The complement \(w^c \) of a string \(w \in \{0, 1\}^* \) is obtained from \(w \) by replacing every \(0 \) in \(w \) with a \(1 \) and vice versa. The complement function can be defined recursively as follows:

\[
\begin{align*}
w^c := & \begin{cases}
\epsilon & \text{if } w = \epsilon \\
1 \cdot x^c & \text{if } w = 0x \\
0 \cdot x^c & \text{if } w = 1x
\end{cases}
\end{align*}
\]

(a) Prove that \(|w| = |w^c| \) for every string \(w \).

(b) Prove that \((x \cdot y)^c = x^c \cdot y^c \) for all strings \(x \) and \(y \).

(c) Prove that \(\#(1, w) = \#(0, w^c) \) for every string \(w \).

1.6 Consider the following recursively defined function:

\[
\text{stutter}(w) := \begin{cases}
\epsilon & \text{if } w = \epsilon \\
aa \cdot \text{stutter}(x) & \text{if } w = ax
\end{cases}
\]

For example, \(\text{stutter(MISSISSIISSSIIPPPPII)} = MMMISSISSIISSSIIPPPPII \).

(a) Prove that \(|\text{stutter}(w)| = 2|w| \) for every string \(w \).

(b) Prove that \(\text{evens}(\text{stutter}(w)) = w \) for every string \(w \).

(c) Prove that \(\text{odds}(\text{stutter}(w)) = w \) for every string \(w \).

(d) Prove that \(w \) is a palindrome if and only if \(\text{stutter}(w) \) is a palindrome, for every string \(w \).
1.7 Consider the following recursive function:

\[
shuffle(w, z) := \begin{cases}
z & \text{if } w = \varepsilon \\
ax & \text{if } w = ax
\end{cases}
\]

For example, \(shuffle(0011, 0101) = 00011011\).

(a) Prove that \(|shuffle(x, y)| = |x| + |y|\) for all strings \(x\) and \(y\).

(b) Prove that \(shuffle(w, w) = \text{stutter}(w)\) for every string \(w\).

(c) Prove that \(shuffle(\text{odds}(w), \text{evens}(w)) = w\) for every string \(w\). \(\langle HW \rangle\)

(d) Prove that \(\text{evens}(\text{shuffle}(w, z)) = z\) for all strings \(w\) and \(z\) such that \(|w| = |z|\). \(\langle HW \rangle\)
Regular expressions

For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, give an equivalent regular expression, and briefly argue why your expression is correct. (On exams, we will not ask for justifications, but you should still justify your expressions in your head.)

2.1 Every string of length at most 3. [*Hint: Don’t try to be clever.*]

2.2 All strings except 010.

2.3 All strings that end with the suffix 010.

2.4 All strings that do not start with the prefix 010.

2.5 All strings that contain the substring 010.

2.6 All strings that do not contain the substring 010.

2.7 All strings that contain the subsequence 010.

2.8 All strings that do not contain the subsequence 010.

2.9 All strings containing the substring 10 or the substring 01.

2.10 All strings containing either the substring 10 or the substring 01, but not both. 〈F16〉

2.11 All strings that do not contain either 001 or 110 as a substring. 〈F19〉

2.12 All strings containing the subsequence 10 or the subsequence 01 (or possibly both).

2.13 All strings containing the subsequence 10 or the subsequence 01, but not both.

2.14 All strings containing at least two 1s and at least one 0. 〈Lab〉

2.15 All strings containing at least two 1s or at least one 0 (or possibly both).

2.16 All strings containing at least two 1s or at least one 0, but not both.

2.17 All strings in which every run of consecutive 0s has even length. 〈S21〉

2.18 All strings in which every run of consecutive 0s has even length and every run of consecutive 1s has odd length. 〈F14〉

2.19 All strings whose length is divisible by 3.

2.20 All strings in which the number of 1s is divisible by 3.

2.21 All strings in 0^*1^* whose length is divisible by 3. 〈S14〉

2.22 All strings in 0^*10^* whose length is divisible by 3. 〈S18〉

2.23 All strings in $0^*1^*0^*$ whose length is even. 〈S18〉

2.24 $\{0^n1^n \mid n > 1 \text{ and } q \in \Sigma^*\}$ 〈S18〉
Direct DFA construction.

Draw or formally describe a DFA that recognizes each of the following languages. Don't forget to describe the states of your DFA in English. Unless otherwise specified, all languages are over the alphabet $\Sigma = \{0, 1\}$.

2.1 The language $\{\text{LONG, LUG, LEGO, LEG, LUG, LOG, LINGO}\}$.
2.2 The language $\text{MOO}^* + \text{MEOO}^*\text{W}$
2.3 Every string of length at most 3.
2.4 All strings except 010.
2.5 All strings that end with the suffix 010.
2.6 All strings that do not start with the prefix 010.
2.7 All strings that contain the substring 010.
2.8 All strings that do not contain the substring 010.
2.9 All strings that contain the subsequence 010.
2.10 All strings containing the substring 10 or the substring 01.
2.11 All strings containing either the substring 10 or the substring 01, but not both. $\langle F16 \rangle$
2.12 All strings that do not contain either 001 or 110 as a substring. $\langle F19 \rangle$
2.13 All strings containing the subsequence 10 or the subsequence 01 (or possibly both).
2.14 All strings containing at least two 1s and at least one 0. $\langle Lab \rangle$
2.15 All strings containing at least two 1s or at least one 0, but not both.
2.16 All strings in which the number of 0s is even or the number of 1s is not divisible by 3.
2.17 All strings in which every run of consecutive 0s has even length. $\langle S21 \rangle$
2.18 All strings in which every run of consecutive 0s has even length and every run of consecutive 1s has odd length. $\langle F14 \rangle$
2.19 All strings that end with 01 and that have odd length $\langle S21 \rangle$
2.20 All strings in which the number of 1s is divisible by 3.
2.21 All strings that represent an integer divisible by 3 in binary.
2.22 All strings that represent an integer divisible by 5 in base 7.
2.23 All strings in 0^*1^* whose length is divisible by 3. $\langle S14 \rangle$
2.24 All strings in 0^*10^* whose length is divisible by 3. $\langle S18 \rangle$
2.25 All strings in $0^*1^*0^*$ whose length is even. $\langle S18 \rangle$
2.26 $\{0^n1^n \mid n > 1 \text{ and } q \in \Sigma^+\}$ $\langle S18 \rangle$
Fooling sets

Prove that each of the following languages is not regular. Unless specified otherwise, all languages are over the alphabet $\Sigma = \{0, 1\}$.

4.1 All strings with more 0s than 1s. $\langle S14 \rangle$

4.2 All strings with fewer 0s than 1s.

4.3 All strings with exactly twice as many 0s as 1s. $\langle Lab \rangle$

4.4 All strings with at least twice as many 0s as 1s.

4.5 $\{0^{2n} \mid n \geq 0\}$ $\langle Lab \rangle$

4.6 $\{0^{3n} \mid n \geq 0\}$ $\langle S21 \rangle$

4.7 $\{0^{F_n} \mid n \geq 0\}$, where F_n is the nth Fibonacci number, defined recursively as follows:

$$F_n := \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}$$

[Hint: If $F_i + F_j$ is a Fibonacci number, then either $i = j \pm 1$ or $\min\{i, j\} \leq 2$.]

4.8 $\{0^{n^2} \mid n \geq 0\}$ $\langle Lab \rangle$

4.9 $\{0^{n^3} \mid n \geq 0\}$

4.10 $\{0^{2m}1^n \mid n \geq 0\}$ $\langle Lab \rangle$

4.11 $\{0^{3m} \mid m \neq 2n\}$ $\langle Lab \rangle$

4.12 $\{0^{i1}0^k \mid 2i = k \text{ or } i = 2k\}$ $\langle S18 \rangle$

4.13 $\{0^{i1}0^k \mid i + j = 2k\}$ $\langle F19 \rangle$

4.14 $\{x#y \mid x, y \in \{0, 1\}^* \text{ and } \#(\emptyset, x) = \#(1, y)\}$

4.15 $\{xx^c \mid x \in \{0, 1\}^*\}$, where x^c is the complement of x, obtained by replacing every 0 in x with a 1 and vice versa. For example, $0001101^c = 1110010$.

4.16 Properly balanced strings of parentheses, described by the context-free grammar $S \rightarrow \epsilon \mid SS \mid (S)$. $\langle Lab \rangle$

4.17 Palindromes whose length is divisible by 3.

4.18 Strings in which at least two runs of consecutive 0s have the same length.

4.19 $\{(01)^n(10)^n \mid n \geq 0\}$

4.20 $\{(01)^m(10)^n \mid n \geq m \geq 0\}$

4.21 $\{w#x#y \mid w, x, y \in \Sigma^* \text{ and } w, x, y \text{ are not all equal}\}$

7
Regular or Not?

For each of the following languages, either prove that the language is regular (by describing a DFA, NFA, or regular expression), or prove that the language is not regular (using a fooling set argument). Unless otherwise specified, all languages are over the alphabet $\Sigma = \{0, 1\}$. Read the language descriptions very carefully.

5.1 The set of all strings in $\{0, 1\}^*$ in which the substrings 01 and 10 appear the same number of times. (For example, the substrings 01 and 01 each appear three times in the string 110001101101.)

5.2 The set of all strings in $\{0, 1\}^*$ in which the substrings 00 and 11 appear the same number of times. (For example, the substrings 00 and 11 each appear three times in the string 110001101101.)

5.3 All strings such that in every prefix, the number of 0s is greater than the number of 1s.

5.4 All strings such that in every non-empty prefix, the number of 0s is greater than the number of 1s.

5.5 All strings such that in every non-empty prefix, the number of 0s is greater than the number of 1s.

5.6 All strings such that in every non-empty prefix, the number of 0s is greater than the number of 1s.

5.7 All strings such that in every non-empty substring of w is also a substring of x.

5.8 All strings such that in every non-empty substring of w is also a substring of x.

5.9 The language generated by the following context-free grammar:

$$
S \rightarrow 0A1 \mid \varepsilon \\
A \rightarrow 1S0 \mid \varepsilon
$$

5.10 The language generated by the following free grammar $S \rightarrow 0S1 \mid 1S0 \mid \varepsilon$

5.11 $\{w#x \mid w, x \in \{0, 1\}^* \text{ and no substring of } w \text{ is also a substring of } x\}$

5.12 $\{w#x \mid w, x \in \{0, 1\}^* \text{ and no non-empty substring of } w \text{ is also a substring of } x\}$

5.13 $\{w#x \mid w, x \in \{0, 1\}^* \text{ and every non-empty substring of } w \text{ is also a substring of } x\}$

5.14 $\{w#x \mid w, x \in \{0, 1\}^* \text{ and } w \text{ is a substring of } x\}$

5.15 $\{w#x \mid w, x \in \{0, 1\}^* \text{ and } w \text{ is a proper substring of } x\}$

5.16 $\{xy \mid x \text{ is a palindrome and } y \text{ is a palindrome}\}$

5.17 $\{xy \mid x \text{ is not a palindrome}\}$

5.18 $\{xy \mid x \text{ is a palindrome and } |x| > 1\}$

5.19 $\{xy \mid #(0, x) = #(1, y) \text{ and } #(1, x) = #(0, y)\}$

5.20 $\{xy \mid #(0, x) = #(1, y) \text{ or } #(1, x) = #(0, y)\}$
Product/Subset Constructions

For each of the following languages L over the alphabet $\{0,1\}$, formally describe a DFA $M = (Q, s, A, \delta)$ that recognizes L. Do not attempt to draw the DFA. Do not use the phrase “product construction”. Instead, give a complete, precise, and self-contained description of the state set Q, the start state s, the accepting state A, and the transition function δ.

6.1 \(\langle S14 \rangle\) All strings that satisfy all of the following conditions:

 (a) the number of 0s is even
 (b) the number of 1s is divisible by 3
 (c) the total length is divisible by 5

6.2 All strings that satisfy at least one of the following conditions: \ldots

6.3 All strings that satisfy exactly one of the following conditions: \ldots

6.4 All strings that satisfy exactly two of the following conditions: \ldots

6.5 All strings that satisfy an odd number of the following conditions: \ldots

- Other possible conditions:

 (a) The number of 0s in w is odd.
 (b) The number of 1s in w is not divisible by 5.
 (c) The length $|w|$ is divisible by 7.
 (d) The binary value of w is divisible by 7.
 (e) w represents a number divisible by 5 in base 7.
 (f) w contains the substring 00
 (g) w does not contain the substring 11
 (h) ww does not contain the substring 101
Regular Language Transformations

Let L be an arbitrary regular language over the alphabet $\Sigma = \{0,1\}$. Prove that each of the following languages is regular.

7.1 All strings in L whose length is divisible by 3.

7.2 $\text{OneInFront}(L) := \{1x \mid x \in L\}$

7.3 $\text{OnlyOnes}(L) := \{1^{#(1,w)} \mid w \in L\}$

7.4 $\text{OnlyOnes}^{-1}(L) := \{w \mid 1^{#(1,w)} \in L\}$

7.5 $\text{MissingFirstOne}(L) := \{w \in \Sigma^* \mid 1w \in L\}$

7.6 $\text{MissingOneOne}(L) := \{xy \mid x1y \in L\}$

7.7 $\text{Prefixes}(L) := \{x \mid xy \in L \text{ for some } y \in \Sigma^*\}$

7.8 $\text{Suffixes}(L) := \{y \mid xy \in L \text{ for some } x \in \Sigma^*\}$ \(\langle F16 \rangle\)

7.9 $\text{Evens}(L) := \{\text{evens}(w) \mid w \in L\}$, where the functions evens and odds are recursively defined as follows:

$$\text{evens}(w) := \begin{cases} \\ \varepsilon & \text{if } w = \varepsilon \\ \text{odds}(x) & \text{if } w = ax \\ \end{cases}$$

$$\text{odds}(w) := \begin{cases} \\ \varepsilon & \text{if } w = \varepsilon \\ a \cdot \text{evens}(x) & \text{if } w = ax \\ \end{cases}$$

For example, $\text{evens}(0001101) = 010$ and $\text{odds}(0001101) = 0011$. \(\langle F14 \rangle\)

7.10 $\text{Evens}^{-1}(L) := \{w \mid \text{evens}(w) \in L\}$, where the functions evens and odds are recursively defined as above. \(\langle F14 \rangle\)

7.11 $\text{AddParity}(L) := \{\text{addparity}(w) \mid w \in L\}$, where \(\langle S18 \rangle\)

$$\text{addparity}(w) = \begin{cases} \emptyset w & \text{if } #(1,w) \text{ is even} \\ 1w & \text{if } #(1,w) \text{ is odd} \\ \end{cases}$$

7.12 $\text{StripFinal}\emptyset s(L) = \{w \mid w\emptyset^n \in L \text{ for some } n \geq 0\}$. Less formally, $\text{StripFinal}\emptyset s(L)$ is the set of all strings obtained by removing any number of final $\emptyset s$ from strings in L. \(\langle S18 \rangle\)

7.13 $\text{Obliviate}(L) := \{\text{obliviate}(w) \mid w \in L\}$, where $\text{obliviate}(w)$ is the string obtained from w by deleting every 1. \(\langle F19 \rangle\)

7.14 $\text{UnObliviate}(L) := \{w \in \Sigma^* \mid \text{obliviate}(w) \in L\}$, where $\text{obliviate}(w)$ is the string obtained from w by deleting every 1. \(\langle F19 \rangle\)

7.15 $\text{SameSlash}(w) = \{\text{sameslash}(w) \mid w \in L\}$, where $\text{sameslash}(w)$ is the string in $\{\emptyset,1,\}/$ obtained from w by inserting a new symbol $/$ between any two consecutive appearances of the same symbol. \(\langle F19 \rangle\)

7.16 $\text{DiffSlash}(w) = \{\text{diffslash}(w) \mid w \in L\}$, where $\text{diffslash}(w)$ is the string in $\{\emptyset,1,\}/$ obtained from w by inserting a new symbol $/$ between any two consecutive symbols that are not equal. \(\langle F19 \rangle\)
Context-Free Grammars

Construct context-free grammars for each of the following languages, and give a brief explanation of how your grammar works, including the language of each non-terminal. Unless specified otherwise, all languages are over the alphabet \{0, 1\}. We explicitly do not want a formal proof of correctness.

8.1 All strings in \(\{0, 1\}^*\) whose length is divisible by 5.

8.2 All strings in which the substrings 01 and 01 appear the same number of times.

8.3 \(\{0^n1^{2n} \mid n \geq 0\}\)

8.4 \(\{0^m1^n \mid n \neq 2m\}\)

8.5 \(\{0^i1^j0^{i+j} \mid i, j \geq 0\}\)

8.6 \(\{0^i+j#0^j#0^i \mid i, j \geq 0\}\)

8.7 \(\{0^i1^2^j \mid j \neq i + k\}\)

8.8 \(\{0^i1^{2j} \mid i = 2k \text{ or } 2i = k\}\) \(\langle S18\rangle\)

8.9 \(\{0^i1^{2j} \mid i + j = 2k\}\) \(\langle F19\rangle\)

8.10 \(\{w\#0^{|w|}0^w \mid w \in \{0, 1\}^*\}\)

8.11 \(\{0^i1^{2j} \mid i = j \text{ or } j = k \text{ or } i = k\}\)

8.12 \(\{0^i1^{2j} \mid i \neq j \text{ or } j \neq k\}\)

8.13 \(\{0^2i^{1+i+j}2^j \mid i, j \geq 0\}\)

8.14 \(\{x#y^R \mid x, y \in \{0, 1\}^* \text{ and } x \neq y\}\)

8.15 All strings in \(\{0, 1\}^*\) that are not palindromes.

8.16 \(\{0^n1^{an+b} \mid n \geq 0\}\), where \(a\) and \(b\) are arbitrary fixed natural numbers.

8.17 \(\{0^n1^{an-b} \mid n \geq b/a\}\), where \(a\) and \(b\) are arbitrary fixed natural numbers.
True or False (sanity check)

For each statement below, check “Yes” if the statement is *ALWAYS* true and “No” otherwise, and give a *brief* explanation of your answer. For example:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>No</td>
<td>If 2 + 2 = 5 then Jeff is the Queen of England.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The hypothesis is false, so the implication is true.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x + y is even.</td>
</tr>
<tr>
<td></td>
<td>Suppose x = 1 and y = 0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The set of all binary strings with an even number of 1s is regular.</td>
</tr>
<tr>
<td></td>
<td>$0^* (1^* 0^)^$</td>
</tr>
<tr>
<td></td>
<td>—or—</td>
</tr>
<tr>
<td></td>
<td>Accepted by 2-state DFA, where current state = #1s mod 2.</td>
</tr>
</tbody>
</table>

Read each statement very carefully. Some of these are deliberately subtle. On the other hand, you should not spend more than two minutes on any single statement.

Definitions

A.1 Every language is regular.
A.2 Every finite language is regular.
A.3 Every infinite language is regular.
A.4 For every language L, if L is regular then L can be represented by a regular expression.
A.5 For every language L, if L is not regular then L cannot be represented by a regular expression.
A.6 For every language L, if L can be represented by a regular expression, then L is regular.
A.7 For every language L, if L cannot be represented by a regular expression, then L is not regular.
A.8 For every language L, if there is a DFA that accepts every string in L, then L is regular.
A.9 For every language L, if there is a DFA that accepts every string not in L, then L is not regular.
A.10 For every language L, if there is a DFA that rejects every string not in L, then L is regular.
A.11 For every language L, if for every string $w \in L$ there is a DFA that accepts w, then L is regular. ($S14$)
A.12 For every language L, if for every string $w \notin L$ there is a DFA that rejects w, then L is regular.
A.13 For every language L, if some DFA recognizes L, then some NFA also recognizes L.
A.14 For every language L, if some NFA recognizes L, then some DFA also recognizes L.

12
A.15 For every language L, if some NFA with ϵ-transitions recognizes L, then some NFA without ϵ-transitions also recognizes L.

A.16 For every language L, and for every string $w \in L$, there is a DFA that accepts w. \(\langle F_{19} \rangle\)

A.17 Every regular language is recognized by a DFA with exactly 374 accepting states. \(\langle F_{19} \rangle\)

A.18 Every regular language is recognized by an NFA with exactly 374 accepting states. \(\langle F_{19} \rangle\)

Closure Properties of Regular Languages

B.1 For all regular languages L and L', the language $L \cap L'$ is regular.

B.2 For all regular languages L and L', the language $L \cup L'$ is regular.

B.3 For all regular languages L, the language L^* is regular.

B.4 For all regular languages A, B, and C, the language $(A \cup B) \setminus C$ is regular.

B.5 For all languages $L \subseteq \Sigma^*$, if L is regular, then $\Sigma^* \setminus L$ is regular.

B.6 For all languages $L \subseteq \Sigma^*$, if L is regular, then $\Sigma^* \setminus L$ is not regular.

B.7 For all languages $L \subseteq \Sigma^*$, if L is not regular, then $\Sigma^* \setminus L$ is regular.

B.8 For all languages $L \subseteq \Sigma^*$, if L is not regular, then $\Sigma^* \setminus L$ is not regular.

B.9 \(\langle S_{14} \rangle\) For all languages L and L', the language $L \cap L'$ is regular.

B.10 \(\langle F_{14} \rangle\) For all languages L and L', the language $L \cup L'$ is regular.

B.11 For every language L, the language L^* is regular. \(\langle F_{14}, F_{16} \rangle\)

B.12 For every language L, if L^* is regular, then L is regular.

B.13 For all languages A, B, and C, the language $(A \cup B) \setminus C$ is regular.

B.14 For every language L, if L is finite, then L is regular.

B.15 For all languages L and L', if L and L' are finite, then $L \cup L'$ is regular.

B.16 For all languages L and L', if L and L' are finite, then $L \cap L'$ is regular.

B.17 For all languages $L \subseteq \Sigma^*$, if L contains infinitely many strings in Σ^*, then L is not regular.

B.18 For all languages $L \subseteq \Sigma^*$, if L contains all but a finite number of strings of Σ^*, then L is regular. \(\langle S_{14} \rangle\)

B.19 For all languages $L \subseteq \{0,1\}^*$, if L contains a finite number of strings in $\{0\}^*$, then L is regular.

B.20 For all languages $L \subseteq \{0,1\}^*$, if L contains all but a finite number of strings in $\{0\}^*$, then L is regular.

B.21 If L and L' are not regular, then $L \cap L'$ is not regular.
B.22 If L and L' are not regular, then $L \cup L'$ is not regular.

B.23 If L is regular and $L \cup L'$ is regular, then L' is regular. \(\{S14\}\)

B.24 If L is regular and $L \cup L'$ is not regular, then L' is not regular. \(\{S14\}\)

B.25 If L is not regular and $L \cup L'$ is regular, then L' is regular.

B.26 If L is regular and $L \cup L'$ is not regular, then L' is not regular.

B.27 If L is regular and $L \cup L'$ is finite, then $L \cup L'$ is regular. \(\{S14\}\)

B.28 If L is regular and $L \cup L'$ is not regular, then $L \cup L'$ is regular. \(\{S14\}\)

B.29 If L is regular and $L \cup L'$ is finite, then $L \cup L'$ is regular.

B.30 If L is regular and $L \cup L'$ is not finite, then $L \cup L'$ is not regular.

B.31 If L is regular and $L \cup L'$ is finite, then $L \cup L'$ is regular.

B.32 If L is not regular and $L \cup L'$ is finite, then $L \cup L'$ is not regular.

B.33 If L is regular and $L \cup L'$ is finite, then $L \cup L'$ is regular.

B.34 If $L \subseteq L'$ and L is regular, then L' is regular.

B.35 If $L \subseteq L'$ and L' is regular, then L is regular. \(\{S14\}\)

B.36 If $L \subseteq L'$ and L is not regular, then L' is not regular.

B.37 If $L \subseteq L'$ and L' is not regular, then L is not regular. \(\{F14\}\)

B.38 Two languages L and L' are regular if and only if $L \cap L'$ is regular. \(\{F19\}\)

B.39 For all languages $L \subseteq \Sigma^*$, if L cannot be described by a regular expression, then some DFA accepts $\Sigma^* \setminus L$.

B.40 For all languages $L \subseteq \Sigma^*$, if no DFA accepts L, then the complement $\Sigma^* \setminus L$ can be described by a regular expression.

B.41 For all languages $L \subseteq \Sigma^*$, if no DFA accepts L, then the complement $\Sigma^* \setminus L$ cannot be described by a regular expression.

B.42 For all languages $L \subseteq \Sigma^*$, if L is recognized by a DFA, then $\Sigma^* \setminus L$ can be described by a regular expression. \(\{F16\}\)

Properties of Context-free Languages

C.1 For all languages $L \subseteq \Sigma^*$, if L cannot be recognized by a DFA, then L is context-free.

C.2 For all languages $L \subseteq \Sigma^*$, if L cannot be recognized by a DFA, then L is not context-free.

C.3 For all languages $L \subseteq \Sigma^*$, if L can be recognized by a DFA, then L is context-free.

C.4 For all languages $L \subseteq \Sigma^*$, if L can be recognized by a DFA, then L is not context-free.
C.5 For all languages $L \subseteq \Sigma^*$, if L is not context-free, then L is regular.

C.6 For all languages $L \subseteq \Sigma^*$, if L is not context-free, then $\Sigma^* \setminus L$ is regular.

C.7 For all languages $L \subseteq \Sigma^*$, if L is not context-free, then L is not regular.

C.8 For all languages $L \subseteq \Sigma^*$, if L is not context-free, then $\Sigma^* \setminus L$ is not regular.

C.9 The empty language is context-free. \(\langle F19\rangle\)

C.10 Every finite language is context-free.

C.11 Every context-free language is regular. \(\langle F14\rangle\)

C.12 Every regular language is context-free.

C.13 Every non-context-free language is non-regular. \(\langle F16\rangle\)

C.14 Every language is either regular or context-free. \(\langle F19\rangle\)

C.15 For all context-free languages L and L', the language $L \cdot L'$ is also context-free. \(\langle F16\rangle\)

C.16 For every context-free language L, the language L^* is also context-free.

C.17 For all context-free languages A, B, and C, the language $(A \cup B)^* \cdot C$ is context-free.

C.18 For every language L, the language L^* is context-free.

C.19 For every language L, if L^* is context-free then L is context-free.

Equivalence Classes. Recall that for any language $L \subset \Sigma^*$, two strings $x, y \in \Sigma^*$ are equivalent with respect to L if and only if, for every string $z \in \Sigma^*$, either both xz and yz are in L, or neither xz nor yz is in L—or more concisely, if x and y have no distinguishing suffix with respect to L. We denote this equivalence by $x \equiv_L y$.

D.1 For every language L, if L is regular, then \equiv_L has finitely many equivalence classes.

D.2 For every language L, if L is not regular, then \equiv_L has infinitely many equivalence classes. \(\langle S14\rangle\)

D.3 For every language L, if \equiv_L has finitely many equivalence classes, then L is regular.

D.4 For every language L, if \equiv_L has infinitely many equivalence classes, then L is not regular.

D.5 For all regular languages L, each equivalence class of \equiv_L is a regular language.

D.6 For every language L, each equivalence class of \equiv_L is a regular language.
Fooling Sets

E.1 If a language \(L \) has an infinite fooling set, then \(L \) is not regular.

E.2 If a language \(L \) has a finite fooling set, then \(L \) is regular.

E.3 If a language \(L \) does not have an infinite fooling set, then \(L \) is regular.

E.4 If a language \(L \) is not regular, then \(L \) has an infinite fooling set.

E.5 If a language \(L \) is regular, then \(L \) has no infinite fooling set.

E.6 If a language \(L \) is not regular, then \(L \) has no finite fooling set. \(\langle F14, F16 \rangle \)

E.7 If a language \(L \) has a fooling set of size 374, then \(L \) is not regular. \(\langle F19 \rangle \)

E.8 If a language \(L \) does not have a fooling set of size 374, then \(L \) is regular. \(\langle F19 \rangle \)

Specific Languages (Gut Check). Do not construct complete DFAs, NFAs, regular expressions, or fooling-set arguments for these languages. You don’t have time.

F.1 \(\{0^i1^j2^k \mid i + j - k = 374\} \) is regular. \(\langle S14 \rangle \)

F.2 \(\{0^i1^j2^k \mid i + j - k \leq 374\} \) is regular.

F.3 \(\{0^i1^j2^k \mid i + j + k = 374\} \) is regular.

F.4 \(\{0^i1^j2^k \mid i + j + k > 374\} \) is regular.

F.5 \(\{0^i1^j \mid i < 374 < j\} \) is regular. \(\langle S14 \rangle \)

F.6 \(\{0^m1^n \mid 0 \leq m + n \leq 374\} \) is regular. \(\langle F14 \rangle \)

F.7 \(\{0^m1^n \mid 0 \leq m - n \leq 374\} \) is regular. \(\langle F14 \rangle \)

F.8 \(\{0^i1^j \mid i, j \geq 0\} \) is not regular. \(\langle F16 \rangle \)

F.9 \(\{0^i1^j \mid (i - j) \text{ is divisible by 374}\} \) is regular. \(\langle S14 \rangle \)

F.10 \(\{0^i1^j \mid (i + j) \text{ is divisible by 374}\} \) is regular.

F.11 \(\{0^n^2 \mid n \geq 0\} \) is regular.

F.12 \(\{0^{37n+4} \mid n \geq 0\} \) is regular.

F.13 \(\{0^n1^n \mid n \geq 0\} \) is regular.

F.14 \(\{0^m1^n \mid m \geq 0 \text{ and } n \geq 0\} \) is regular.

F.15 \(\{0^{374n} \mid n \geq 0\} \) is regular. \(\langle F19 \rangle \)

F.16 \(\{0^{37n^4n} \mid n \geq 374\} \) is regular. \(\langle F19 \rangle \)

F.17 \(\{0^{37n^4n} \mid n \leq 374\} \) is regular. \(\langle F19 \rangle \)
F.18 \{w \in \{0, 1\}^* \mid |w| \text{ is divisible by 374}\} is regular.

F.19 \{w \in \{0, 1\}^* \mid w \text{ represents a integer divisible by 374 in binary}\} is regular.

F.20 \{w \in \{0, 1\}^* \mid w \text{ represents a integer divisible by 374 in base 473}\} is regular.

F.21 \{w \in \{0, 1\}^* \mid |\#(0, w) - \#(1, w)| < 374\} is regular.

F.22 \{w \in \{0, 1\}^* \mid |\#(0, x) - \#(1, x)| < 374 \text{ for every prefix } x \text{ of } w\} is regular.

F.23 \{w \in \{0, 1\}^* \mid |\#(0, x) - \#(1, x)| < 374 \text{ for every substring } x \text{ of } w\} is regular.

F.24 \{w0^{\#(0, w)} \mid w \in \{0, 1\}^*\} is regular.

F.25 \{w0^{\#(0, w) \mod 374} \mid w \in \{0, 1\}^*\} is regular.

Playing with Automata

G.1 Let \(M = (\Sigma, Q, s, A, \delta)\) and \(M' = (\Sigma, Q, s, Q \setminus A, \delta)\) be arbitrary \textbf{DFA}s with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then \(L(M) \cap L(M') = \emptyset. \langle F16 \rangle\)

G.2 Let \(M = (\Sigma, Q, s, A, \delta)\) and \(M' = (\Sigma, Q, s, Q \setminus A, \delta)\) be arbitrary \textbf{NFA}s with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then \(L(M) \cap L(M') = \emptyset. \langle F16 \rangle\)

G.3 Let \(M\) be a \textbf{DFA} over the alphabet \(\Sigma\). Let \(M'\) be identical to \(M\), except that accepting states in \(M\) are non-accepting in \(M'\) and vice versa. Each string in \(\Sigma^*\) is accepted by exactly one of \(M\) and \(M'\).

G.4 Let \(M\) be an \textbf{NFA} over the alphabet \(\Sigma\). Let \(M'\) be identical to \(M\), except that accepting states in \(M\) are non-accepting in \(M'\) and vice versa. Each string in \(\Sigma^*\) is accepted by exactly one of \(M\) and \(M'\).

G.5 If a language \(L\) is recognized by a \textbf{DFA} with \(n\) states, then the complementary language \(\Sigma^* \setminus L\) is recognized by a \textbf{DFA} with at most \(n + 1\) states.

G.6 If a language \(L\) is recognized by an \textbf{NFA} with \(n\) states, then the complementary language \(\Sigma^* \setminus L\) is recognized by a \textbf{NFA} with at most \(n + 1\) states.

G.7 If a language \(L\) is recognized by a \textbf{DFA} with \(n\) states, then \(L^+\) is recognized by a \textbf{DFA} with at most \(n + 1\) states.

G.8 If a language \(L\) is recognized by an \textbf{NFA} with \(n\) states, then \(L^+\) is recognized by a \textbf{NFA} with at most \(n + 1\) states.
Language Transformations

H.1 For every regular language L, the language $\{w^R \mid w \in L\}$ is also regular.

H.2 For every language L, if the language $\{w^R \mid w \in L\}$ is regular, then L is also regular. \(\langle F14 \rangle\)

H.3 For every language L, if the language $\{w^R \mid w \in L\}$ is not regular, then L is also not regular. \(\langle F14 \rangle\)

H.4 For every regular language L, the language $\{w \mid ww^R \in L\}$ is also regular.

H.5 For every regular language L, the language $\{ww^R \mid w \in L\}$ is also regular.

H.6 For every language L, if the language $\{w \mid ww^R \in L\}$ is regular, then L is also regular. \(\text{Hint: Consider the language } L = \{0^n1^n \mid n \geq 0\}.\)

H.7 For every regular language L, the language $\{0^{n}\mid w \in L\}$ is also regular.

H.8 For every language L, if the language $\{0^{n}\mid w \in L\}$ is regular, then L is also regular.

H.9 For every context-free language L, the language $\{w^R \mid w \in L\}$ is also context-free.