Lecture 26 Scribble
Chat Moderators: Eliot it Tanvi

Hamiltonian Cycle?

Posit that $P l$ is NP - complete.

1. Pl must be in NP? Yes Certificate \rightarrow list of vertices
2. Pl is DP-hard?

We know LENP $\leq p$ SSA
So if $3 S A T \leq_{p} \mathrm{Pl}(H C)$ then Pl is NP-had

Covert φ to G with He?
φ has $\begin{aligned} & n \text { variables } \\ & m \text { clauses }\end{aligned} \quad \varnothing=$?

LAt to Riles = The Right to Led t =Face

$$
\begin{aligned}
& x=\langle 1,0,1\rangle \\
& x=\langle 0,0,1\rangle \\
& \varphi=\left(x_{1}\right) \\
& \varphi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \\
& \varphi=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\overline{x_{1}}, \overline{x_{2}} \cup \overline{x_{3}}\right)
\end{aligned}
$$

Graph Coloring undirected
Given a graph $G=(0, F)$ and integer k Can the vertices of G be colored using k colors so all vertices connected by an edge have different colors

3SAT to 3-Coloring

$$
\varphi=\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
$$

$$
\varphi=\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) V\left(x_{1} \cup x_{2} \vee x_{3}\right)
$$

Circuit SAT

$$
\phi=\left(x_{1} v_{x_{2}} v_{x_{3}}\right) \mu\left(x_{4}\right.
$$

Given a circuit, is there an assignment that outputs true

SAT \leq_{p} CirenitSAT

Circuit SAT \leq_{p} 3SAT

x_{3}	x_{1}	x_{2}	$x_{3}=x_{1} \wedge x_{2}$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$Q_{A N D}=\left(z V_{\bar{x}} V_{\bar{y}}\right) \lambda\left(\bar{z} V_{x} V_{y}\right) \Lambda$ $\left(\bar{z} \vee_{x} \vee_{y}\right) \wedge\left(\bar{z} \vee_{\bar{x}} \vee_{y}\right)$ N_{x}

DNF

$$
\begin{aligned}
& D N F \\
& \beta=\left(\overline{x_{1}} \cdot \cdot \overline{x_{2}} \cdot \overline{x_{3}}\right)+C \cdots .
\end{aligned}
$$

$$
\varphi=y_{3} \wedge\left(y_{2}=y_{1} \vee x_{3}\right) \wedge\left(y_{1}=x_{1} \wedge x_{2}\right)
$$

