Lecture 23 Scribble
Chat Moderators: Junyeob
Emerson

Topics:-Reductions

- Cliques/Independent sets
- SaT

Two Problems $X \leq_{p} Y$

$A_{x}=$ finding shortest path from s tot D_{j} 'tetra's
$A_{y}=$ finding all shortest paths Bellman-Fond O_{j} ikstra's \leq Bell manCFord

easy $=$ has a polynomial time deterministic solution
hard=
$X \leq_{p} Y \quad$ (i) X is no harder than Y
(2) If X is hard, Y should ales be hand Y is ablenct as land of X

Ercomple: Clique / Independent Set
Independent Set: $I \leq V$ sit. no $u, v \in I$ are connected by an edge

Clique: $C \subseteq V$ s.t $\{u, v\} \in E$ for all $u, v \in C$

Given $G(V, E)$ and an integer k :
-Does G have an $|I . S| \geqslant k$? MAX IND SET

- Does G have a dique, $|C| \geqslant k$? MAX CLIQUE
$A_{y}=$ Solves MAXCLIQUE
$G(V, E)$

$R=$ finding the edge complement of the graph $O\left(v^{2}\right)$
$\operatorname{Max} I S \leq{ }_{p}$ Max Clique \quad axis $\simeq_{p} M a x C l i q u e$

If Y_{l} is hand is X also hard? FACSE
If X is known to be "hand" then Y does not have a efficient algorithm. TRUE
Want to prove HWP\#4(x) is hard
Reduce a hard problem to x.
If Y has a polynomial time algorithm then it implies X has a polynomial time algorithm. Depends
If R is polynomial then true
If R is "hand" then false.
$-X \leq y$ implies $Y \leq_{p} X$? FALSE

If $X \leq_{p} Y$ and $Y \leq_{p} Z$ then $X \leq_{p} Z$? TRUE

SAT Problems: (CNF, SAT, JCNF, 3SAT)

$$
\begin{array}{ll}
X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} & V \equiv \operatorname{or}(t) \wedge \equiv \text { and }(\cdot) \\
{[\underbrace{\left(x_{1} \cup x_{2} \cup \bar{x}_{4}\right)}_{\text {clause }} \wedge \underbrace{\left(x_{2} \cup x_{\overline{3}}\right)}_{\text {literal }} \wedge x_{5}]} & \begin{array}{l}
\text { Is there a assignment to } \\
\text { the boolean variables sit. } \\
\text { the expression is truce. }
\end{array}
\end{array}
$$

$>$ conjunctive normal form

$$
x_{1} x_{2}+\bar{x}_{3} x_{4} x_{5}+x_{1} \bar{x}_{3} \cdots
$$

\rightarrow disjunctive normal form
3CNF: $\left(x_{1} \vee x_{2} \vee \overline{x_{9}}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{3}\right) \wedge \ldots$.
Every boolean expression can be expressed as 3CNF
$a b$

$$
a \wedge b \equiv(\bar{a} \vee \bar{b}) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b})
$$

a	b	f
0	0	0
0	1	0
1	0	0
1	1	1

Problem : SAT (Satisfiability) (NR)
Given a CNF formula is there an assignment which results in the formula es evaluating true.

Every CNF expression can be reduced to 3 NF

- if clause >3 literals $(a \vee b \vee c) \Rightarrow(a \vee b \vee r) \wedge(c \vee \bar{z})$
X / Y are boolem expressions if $(X \vee Y)$ are SAT $(a \cup b \vee c \vee d) \Rightarrow\left(a \cup_{b} \cup_{z}\right) \wedge\left(e V_{d V \bar{z}}\right)$ then $\left(X \vee_{z}\right) \wedge(Y \vee \bar{\imath})$ are $S A T$
-if duse has 2 literal

$$
(a \vee b) \Longrightarrow(a \vee b \vee u) \wedge(a \vee b \vee \bar{u})
$$

-if clause has l literal

$$
(a) \Rightarrow\left\langle a V_{u} V_{v}\right) \wedge\left(a V_{\bar{u}} V_{v}\right) \wedge\left(a V_{u} V_{\bar{v}}\right) \wedge\left(a V_{u} V_{\bar{v}}\right)
$$

