CS/ECE 374, Fall 2020

Nondeterministic polynomial time

Lecture 22 Thursday, November 26, 2020

LATEXed: October 22, 2020 15:15

CS/ECE 374, Fall 2020

22.1

Review

CS/ECE 374, Fall 2020

22.1.1

Review: Polynomial reductions

Polynomial-time Reduction

Definition 22.1.

 $X \leq_P Y$: polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A such that:

- **1** Given an instance I_X of X, A produces an instance I_Y of Y.
- ② \mathcal{A} runs in time polynomial in $|I_X|$. $(|I_Y| = \text{size of } I_Y)$.
- 3 Answer to I_X YES \iff answer to I_Y is YES.

Polynomial-time Reduction

Definition 22.1.

 $X \leq_P Y$: polynomial time reduction from a <u>decision</u> problem X to a <u>decision</u> problem Y is an algorithm A such that:

- **1** Given an instance I_X of X, A produces an instance I_Y of Y.
- ② \mathcal{A} runs in time polynomial in $|I_X|$. $(|I_Y| = \text{size of } I_Y)$.
- **3** Answer to I_X YES \iff answer to I_Y is YES.

Proposition 22.2.

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Polynomial-time Reduction

Definition 22.1.

 $X \leq_P Y$: polynomial time reduction from a <u>decision</u> problem X to a <u>decision</u> problem Y is an algorithm A such that:

- **1** Given an instance I_X of X, A produces an instance I_Y of Y.
- 2 \mathcal{A} runs in time polynomial in $|I_X|$.

 $(|I_Y| = \text{size of } I_Y).$

3 Answer to I_X YES \iff answer to I_Y is YES.

Proposition 22.2.

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

This is a Karp reduction.

A quick reminder

 $oldsymbol{0}$ f and g monotone increasing. Assume that:

- Conclusion: Composition of two polynomials, is a polynomial.

A quick reminder

1 f and **g** monotone increasing. Assume that:

1
$$f(n) \le a * n^b$$
 (i.e., $f(n) = O(n^b)$)
2 $g(n) \le c * n^d$ (i.e., $g(n) = O(n^d)$)

- $g(f(n)) = O(n^{bd})$ is a polynomial.
- Occidentation: Composition of two polynomials, is a polynomial.

A quick reminder

1 f and **g** monotone increasing. Assume that:

1
$$f(n) \le a * n^b$$
 (i.e., $f(n) = O(n^b)$)
2 $g(n) \le c * n^d$ (i.e., $g(n) = O(n^d)$)

- Occidentation: Composition of two polynomials, is a polynomial.

A quick reminder

 $oldsymbol{0}$ f and g monotone increasing. Assume that:

1
$$f(n) \le a * n^b$$
 (i.e., $f(n) = O(n^b)$)
2 $g(n) \le c * n^d$ (i.e., $g(n) = O(n^d)$)

- $g(f(n)) = O(n^{bd})$ is a polynomial.
- Occidentation: Composition of two polynomials, is a polynomial.

A quick reminder

 $oldsymbol{0}$ f and g monotone increasing. Assume that:

1
$$f(n) \le a * n^b$$
 (i.e., $f(n) = O(n^b)$)
2 $g(n) \le c * n^d$ (i.e., $g(n) = O(n^d)$)

- $g(f(n)) = O(n^{bd})$ is a polynomial.
- Occidentation: Composition of two polynomials, is a polynomial.

A quick reminder

1 f and **g** monotone increasing. Assume that:

1
$$f(n) \le a * n^b$$
 (i.e., $f(n) = O(n^b)$)
2 $g(n) \le c * n^d$ (i.e., $g(n) = O(n^d)$)

- $\mathbf{g} \implies \mathbf{g}(\mathbf{f}(\mathbf{n})) = \mathbf{O}(\mathbf{n}^{bd})$ is a polynomial.
- Conclusion: Composition of two polynomials, is a polynomial.

A quick reminder

 $oldsymbol{0}$ f and g monotone increasing. Assume that:

1
$$f(n) \le a * n^b$$
 (i.e., $f(n) = O(n^b)$)
2 $g(n) \le c * n^d$ (i.e., $g(n) = O(n^d)$)

- Conclusion: Composition of two polynomials, is a polynomial.

Transitivity of Reductions

Proposition 22.3.

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **1** Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- ② To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y
- \odot ...show that an algorithm for Y implies an algorithm for X.

Transitivity of Reductions

Proposition 22.3.

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **1** Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- 2 To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y
- \odot ...show that an algorithm for Y implies an algorithm for X.

Transitivity of Reductions

Proposition 22.3.

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **1** Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- 2 To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y
- lacktriangle ...show that an algorithm for $oldsymbol{Y}$ implies an algorithm for $oldsymbol{X}$.

Polynomial time reduction...

Proving Correctness of Reductions

To prove that $X \leq_P Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- ② Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - 1 typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - 2 typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
- 3 Runs in polynomial time.

Polynomial time reduction...

Proving Correctness of Reductions

To prove that $X \leq_P Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- ② Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - 2 typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).

• Runs in **polynomial** time.

THE END

. . .

(for now)

CS/ECE 374, Fall 2020

22.1.2

A quick pre-review of complexity classes

THE END

...

(for now)

CS/ECE 374, Fall 2020

22.1.3

Polynomial equivalent problems: What do we know so far

- Independent Set \leq_P Clique Clique \leq_P Independent Set.
 - \Longrightarrow Clique \cong_P Independent Set.
- **2** Vertex Cover \leq_P Independent Set Independent Set \leq_P Vertex Cover. \Longrightarrow Independent Set \approxeq_P Vertex Cover
- ③ 3SAT \leq_P SAT SAT \leq_P 3SAT. ⇒ 3SAT \approxeq_P SAT.
- **③** Clique \cong_P Independent Set \cong_P Vertex Cover 3SAT \cong_P SAT.

- **1** Independent Set \leq_P Clique Clique \leq_P Independent Set. ⇒ Clique \cong_P Independent Set.
- ② Vertex Cover \leq_P Independent Set Independent Set \leq_P Vertex Cover. \Longrightarrow Independent Set \cong_P Vertex Cover
- ③ 3SAT \leq_P SAT SAT \leq_P 3SAT. \Longrightarrow 3SAT \approxeq_P SAT.
- **1** Clique \cong_P Independent Set \cong_P Vertex Cover 3SAT \cong_P SAT.

- **1** Independent Set \leq_P Clique Clique \leq_P Independent Set. ⇒ Clique \cong_P Independent Set.
- ② Vertex Cover ≤_P Independent Set Independent Set ≤_P Vertex Cover.
 ⇒ Independent Set ≈_P Vertex Cover
- **3** 3SAT \leq_P SAT SAT \leq_P 3SAT. ⇒ 3SAT \approxeq_P SAT.
- **③** Clique \cong_P Independent Set \cong_P Vertex Cover 3SAT \cong_P SAT.

- **1** Independent Set \leq_P Clique Clique \leq_P Independent Set. ⇒ Clique \cong_P Independent Set.
- **2** Vertex Cover \leq_P Independent Set Independent Set \leq_P Vertex Cover. \Longrightarrow Independent Set \cong_P Vertex Cover.
- ③ 3SAT \leq_P SAT SAT \leq_P 3SAT. ⇒ 3SAT \cong_P SAT.
- **③** Clique \cong_P Independent Set \cong_P Vertex Cover 3SAT \cong_P SAT.

What do we know so far

- **1** Independent Set \leq_P Clique Clique \leq_P Independent Set. ⇒ Clique \cong_P Independent Set.
- **2** Vertex Cover \leq_P Independent Set Independent Set \leq_P Vertex Cover. \Longrightarrow Independent Set \cong_P Vertex Cover.
- ③ 3SAT \leq_P SAT SAT \leq_P 3SAT. ⇒ 3SAT \cong_P SAT.
- **1** Clique \cong_P Independent Set \cong_P Vertex Cover 3SAT \cong_P SAT.

What do we know so far

- **1** Independent Set \leq_P Clique Clique \leq_P Independent Set. ⇒ Clique \cong_P Independent Set.
- Vertex Cover ≤_P Independent Set
 Independent Set ≤_P Vertex Cover.
 ⇒ Independent Set ≈_P Vertex Cover.
- **3** 3SAT \leq_P SAT SAT \leq_P 3SAT. ⇒ 3SAT \approxeq_P SAT.
- **1** Clique \cong_P Independent Set \cong_P Vertex Cover 3SAT \cong_P SAT.

What do we know so far

- **1** Independent Set \leq_P Clique Clique \leq_P Independent Set. ⇒ Clique \cong_P Independent Set.
- **2** Vertex Cover \leq_P Independent Set Independent Set \leq_P Vertex Cover. \Longrightarrow Independent Set \cong_P Vertex Cover.
- **3** 3SAT \leq_P SAT SAT \leq_P 3SAT. ⇒ 3SAT \approxeq_P SAT.
- **③** Clique \cong_P Independent Set \cong_P Vertex Cover 3SAT \cong_P SAT.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

22.2

NP: Nondeterministic polynomial time

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

22.2.1 Introduction

P and NP and Turing Machines

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time <u>non-deterministic</u> algorithms.
- Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm
- P ⊆ NP
- Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as asking whether P = NP.

Problems with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples

- **① SAT** formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k: a subset S of vertices.
- 4 Homework

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **① SAT** formula φ : proof is a satisfying assignment.
- 2 Independent Set in graph G and k: a subset S of vertices.
- 4 Homework

Sudoku

			2	5				
	3	6		4		8		
	3					1	6	
2 7								
7	6						1	9
								9
	1	5					7	
		5		8		2	4	
				3	7			

Given $n \times n$ sudoku puzzle, does it have a solution?

Solution to the Sudoku example...

1	8	7	2	5	6	9	3	4
9	3	6	7	4	1	8	5	2
5	4	2	8	9	3	1	6	7
2	9	1	3	7	4	6	8	5
7	6	3	5	2	8	4	1	9
8	5	4	6	1	9	7	2	3
4	1	5	9	6	2	3	7	8
3	7	9	1	8	5	2	4	6
6	2	8	4	3	7	5	9	1

THE END

..

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

22.2.2 Certifiers/Verifiers

Certifiers

Definition 22.1.

An algorithm $C(\cdot, \cdot)$ is a <u>certifier</u> for problem X if the following two conditions hold:

- For every $s \in X$ there is some string t such that C(s,t) = "yes"
- If $s \not\in X$, C(s, t) = "no" for every t.

The string t is called a certificate or proof for s.

Efficient (polynomial time) Certifiers

Definition 22.2 (Efficient Certifier.).

A certifier C is an <u>efficient certifier</u> for problem X if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that C(s, t) = "yes" and $|t| \le p(|s|)$ (proof is polynomially short)..
- If $s \not\in X$, C(s, t) = "no" for every t.
- $C(\cdot, \cdot)$ runs in polynomial time in the size of s.

Since $|\mathbf{t}| = |\mathbf{s}|^{O(1)}$, and certifier runs in polynomial time in $|\mathbf{s}| + |\mathbf{t}|$, it follows that certifier runs in polynomial time in the size of \mathbf{s} .

Proposition 22.3.

If $s \in X$, then there exists a certificate t of polynomial length in s, such that C(s, t) returns YES, and runs in polynomial time in |s|.

Efficient (polynomial time) Certifiers

Definition 22.2 (Efficient Certifier.).

A certifier C is an <u>efficient certifier</u> for problem X if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that C(s, t) = "yes" and $|t| \le p(|s|)$ (proof is polynomially short)..
- If $s \not\in X$, C(s, t) = "no" for every t.
- $C(\cdot, \cdot)$ runs in polynomial time in the size of s.

Since $|t| = |s|^{O(1)}$, and certifier runs in polynomial time in |s| + |t|, it follows that certifier runs in polynomial time in the size of s.

Proposition 22.3.

If $s \in X$, then there exists a certificate t of polynomial length in s, such that C(s,t) returns YES, and runs in polynomial time in |s|.

Example: Independent Set

- **1** Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subseteq V$.
 - **Q** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

22.2.3

Examples to problems with efficient certifiers

Example: Vertex Cover

• Problem: Does **G** have a vertex cover of size $\leq k$?

• Certificate: $S \subseteq V$.

Q Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.

Example: **SAT**

- **1** Problem: Does formula φ have a satisfying truth assignment?
 - Certificate: Assignment a of 0/1 values to each variable.
 - **2** Certifier: Check each clause under **a** and say "yes" if all clauses are true.

Example: Composites

Problem: Composite

Instance: A number *s*.

Question: Is the number **s** a composite?

Problem: Composite.

① Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.

Certifier: Check that t divides s.

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA *M*.

Question: Is $L(M) = \Sigma^*$, that is, does M accept all strings?

Problem: NFA Universality.

Certificate: A DFA M' equivalent to M

2 Certifier: Check that $L(M') = \Sigma^*$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in **NP**.

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA *M*.

Question: Is $L(M) = \Sigma^*$, that is, does M accept all strings?

Problem: NFA Universality.

Certificate: A DFA M' equivalent to M

2 Certifier: Check that $L(M') = \Sigma^*$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in **NP**.

Example: A String Problem

Problem: PCP

```
Instance: Two sets of binary strings \alpha_1, \ldots, \alpha_n and \beta_1, \ldots, \beta_n Question: Are there indices i_1, i_2, \ldots, i_k such that \alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_k} = \beta_{i_1} \beta_{i_2} \ldots \beta_{i_k}
```

- Problem: PCP
 - Certificate: A sequence of indices i_1, i_2, \ldots, i_k
 - **Q** Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

PCP = Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n Question: Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_k} = \beta_{i_1} \beta_{i_2} \ldots \beta_{i_k}$

- Problem: PCP
 - Certificate: A sequence of indices i_1, i_2, \ldots, i_k
 - $oldsymbol{\circ}$ Certifier: Check that $lpha_{i_1}lpha_{i_2}\ldotslpha_{i_k}=eta_{i_1}eta_{i_2}\ldotseta_{i_k}$

PCP = Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

THE END

. . .

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

22.2.4

NP: Definition

Nondeterministic Polynomial Time

Definition 22.4.

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition 22.4.

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Example 22.5.

Independent Set, **Vertex Cover**, **Set Cover**, **SAT**, **3SAT**, and **Composite** are all examples of problems in **NP**.

Why is it called...

Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

- ① /: instance.
- ② c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about C as an algorithm for the original problem, if:

- Given I, the algorithm guesses (non-deterministically, and who knows how) a certificate c.
- ② The algorithm now verifies the certificate c for the instance l.
- **NP** can be equivalently described using Turing machines.

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example 22.6.

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

THE END

- - -

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

22.2.5 Intractability

P versus NP

Proposition 22.7.

 $P \subseteq NP$.

For a problem in P no need for a certificate!

Proof.

Consider problem $X \in \mathbf{P}$ with algorithm A. Need to demonstrate that X has an efficient certifier:

- ① Certifier C on input s, t, runs A(s) and returns the answer.
- C runs in polynomial time.
- If $s \in X$, then for every t, C(s, t) = "yes".
- ① If $s \not\in X$, then for every t, C(s, t) = "no".

P versus NP

Proposition 22.7.

 $P \subseteq NP$.

For a problem in P no need for a certificate!

Proof.

Consider problem $X \in \mathbf{P}$ with algorithm A. Need to demonstrate that X has an efficient certifier:

- Certifier C on input s, t, runs A(s) and returns the answer.
- C runs in polynomial time.
- 3 If $s \in X$, then for every t, C(s, t) = "yes".
- **4** If $s \not\in X$, then for every t, C(s, t) = "no".

Exponential Time

Definition 22.8.

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

Exponential Time

Definition 22.8.

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

NP versus EXP

Proposition 22.9.

 $NP \subset EXP$.

Proof.

Let $X \in \mathbb{NP}$ with certifier C. Need to design an exponential time algorithm for X.

- ① For every t, with $|t| \le p(|s|)$ run C(s,t); answer "yes" if any one of these calls returns "yes".
- 3 Algorithm runs in $O(q(|s| + |p(s)|)2^{p(|s|)})$, where q is the running time of C.

Examples

- **SAT**: try all possible truth assignment to variables.
- Independent Set: try all possible subsets of vertices.
- **OVERTICAL STATE OF S**

Is **NP** efficiently solvable?

We know $P \subseteq NP \subseteq EXP$.

Is **NP** efficiently solvable?

We know $P \subseteq NP \subseteq EXP$.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

- Many important optimization problems can be solved efficiently.
- 2 The RSA cryptosystem can be broken.
- No security on the web.
- Mo e-commerce . . .
- Oreativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web
- No e-commerce . . .
- Oreativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- © Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Oreativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Oreativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

P versus NP

Status

Relationship between **P** and **NP** remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving P versus NP is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Review question: If P = NP this implies that...

- (A) **Vertex Cover** can be solved in polynomial time.
- (B) P = EXP.
- (C) EXP \subseteq P.
- (D) All of the above.

THE END

. . .

(for now)