Regular Languages and Expressions

Lecture 2
Thursday, August 27, 2020
2.1
Regular Languages
Regular Languages

A class of simple but useful languages.

The set of **regular languages** over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular.
 The * operator name is **Kleene star**.
7. If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular.
 The \cdot^* operator name is Kleene star.
7. If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \cup_{n \geq 0} L^n$ is regular.
 The * operator name is Kleene star.
7. If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular.
 The \cdot^* operator name is **Kleene star**.
7. If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular.
 The \cdot^* operator name is Kleene star.
7. If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\varepsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular.
 The \cdot^* operator name is **Kleene star**.
7. If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.
Regular Languages

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots, be regular languages over alphabet Σ. Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.
Some simple regular languages

Lemma
If \(w \) is a string then \(L = \{ w \} \) is regular.

Example: \{aba\} or \{abbabbab\}. Why?

Lemma
Every finite language \(L \) is regular.

Examples: \(L = \{a, abaab, aba\} \). \(L = \{w \mid |w| \leq 100\} \). Why?
Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: $\{aba\}$ or $\{abbabbab\}$. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \leq 100\}$. Why?
More Examples

- $\{w \mid w$ is a keyword in Python program$\}$
- $\{w \mid w$ is a valid date of the form mm/dd/yy$\}$
- $\{w \mid w$ describes a valid Roman numeral$\}$
- $\{w \mid w$ contains ”CS374” as a substring$\}$.
Review questions

1. $L_1 \subseteq \{0, 1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?

2. $L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\}$. The language L_2 is regular. T/F?

3. $L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\}$. The language L_3 is regular. T/F?

4. $L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\}$. The language L_4 is regular. T/F?

5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?

6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?

7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?

8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?

9. $L_9 = \{0^i1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?

10. $L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most } 374 \text{ 1s}\}$. L_{10} is regular. T/F?
THE END

...(for now)
2.1.1
Regular Languages: Review questions
Review questions

1. Let $L_1 \subseteq \{0, 1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?

2. Let $L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\}$. The language L_2 is regular. T/F?

3. Let $L_3 = \{0^{2^i} \mid i = 0, 1, \ldots, \infty\}$. The language L_3 is regular. T/F?

4. Let $L_4 = \{0^{17^i} \mid i = 0, 1, \ldots, \infty\}$. The language L_4 is regular. T/F?

5. Let $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?

6. Let $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_6 is regular. T/F?

7. Let $L_7 = \{0^i \mid i \text{ is divisible by 2, 3, and 5}\}$. L_7 is regular. T/F?

8. Let $L_8 = \{0^i \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_8 is regular. T/F?

9. Let $L_9 = \{0^{i1^i} \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_9 is regular. T/F?

10. Let $L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most 374 1s}\}$. L_{10} is regular. T/F?
Review questions

1. $L_1 \subseteq \{0, 1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?

2. $L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\}$. The language L_2 is regular. T/F?

3. $L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\}$. The language L_3 is regular. T/F?

4. $L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\}$. The language L_4 is regular. T/F?

5. $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?

6. $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?

7. $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F?

8. $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?

9. $L_9 = \{0^i1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?

10. $L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most } 374 \text{ } 1s\}$. L_{10} is regular. T/F?
Review questions

1. \(L_1 \subseteq \{0, 1\}^* \) be a finite language. \(L_1 \) is a set with finite number of strings. T/F?

2. \(L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\} \). The language \(L_2 \) is regular. T/F?

3. \(L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\} \). The language \(L_3 \) is regular. T/F?

4. \(L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\} \). The language \(L_4 \) is regular. T/F?

5. \(L_5 = \{0^i \mid \text{i is not divisible by 17}\} \). \(L_5 \) is regular. T/F?

6. \(L_6 = \{0^i \mid \text{i is divisible by 2, 3, or 5}\} \). \(L_6 \) is regular. T/F?

7. \(L_7 = \{0^i \mid \text{i is divisible by 2, 3, and 5}\} \). \(L_7 \) is regular. T/F?

8. \(L_8 = \{0^i \mid \text{i is divisible by 2, 3, but not 5}\} \). \(L_8 \) is regular. T/F?

9. \(L_9 = \{0^{i1^i} \mid \text{i is divisible by 2, 3, but not 5}\} \). \(L_9 \) is regular. T/F?

10. \(L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most 374 1s}\} \). \(L_{10} \) is regular. T/F?
Review questions

1. $L_1 \subseteq \{0, 1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?

2. $L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\}$. The language L_2 is regular. T/F?

3. $L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\}$. The language L_3 is regular. T/F?

4. $L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\}$. The language L_4 is regular. T/F?

5. $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?

6. $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_6 is regular. T/F?

7. $L_7 = \{0^i \mid i \text{ is divisible by 2, 3, and 5}\}$. L_7 is regular. T/F?

8. $L_8 = \{0^i \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_8 is regular. T/F?

9. $L_9 = \{0^i1^i \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_9 is regular. T/F?

10. $L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most 374 1s}\}$. L_{10} is regular. T/F?
Review questions

1. $L_1 \subseteq \{0, 1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?

2. $L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\}$. The language L_2 is regular. T/F?

3. $L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\}$. The language L_3 is regular. T/F?

4. $L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\}$. The language L_4 is regular. T/F?

5. $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?

6. $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_6 is regular. T/F?

7. $L_7 = \{0^i \mid i \text{ is divisible by 2, 3, and 5}\}$. L_7 is regular. T/F?

8. $L_8 = \{0^i \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_8 is regular. T/F?

9. $L_9 = \{0^{i1^i} \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_9 is regular. T/F?

10. $L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most 374 1s}\}$. L_{10} is regular. T/F?
Review questions

1. \(L_1 \subseteq \{0, 1\}^\ast \) be a finite language. \(L_1 \) is a set with finite number of strings. T/F?

2. \(L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\} \). The language \(L_2 \) is regular. T/F?

3. \(L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\} \). The language \(L_3 \) is regular. T/F?

4. \(L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\} \). The language \(L_4 \) is regular. T/F?

5. \(L_5 = \{0^i \mid i \text{ is not divisible by 17}\} \). \(L_5 \) is regular. T/F?

6. \(L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\} \). \(L_6 \) is regular. T/F?

7. \(L_7 = \{0^i \mid i \text{ is divisible by 2, 3, and 5}\} \). \(L_7 \) is regular. T/F?

8. \(L_8 = \{0^i \mid i \text{ is divisible by 2, 3, but not 5}\} \). \(L_8 \) is regular. T/F?

9. \(L_9 = \{0^i1^i \mid i \text{ is divisible by 2, 3, but not 5}\} \). \(L_9 \) is regular. T/F?

10. \(L_{10} = \{w \in \{0, 1\}^\ast \mid w \text{ has at most 374 1s}\} \). \(L_{10} \) is regular. T/F?
Review questions

1. $L_1 \subseteq \{0, 1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?

2. $L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\}$. The language L_2 is regular. T/F?

3. $L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\}$. The language L_3 is regular. T/F?

4. $L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\}$. The language L_4 is regular. T/F?

5. $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?

6. $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_6 is regular. T/F?

7. $L_7 = \{0^i \mid i \text{ is divisible by 2, 3, and 5}\}$. L_7 is regular. T/F?

8. $L_8 = \{0^i \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_8 is regular. T/F?

9. $L_9 = \{0^i1^i \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_9 is regular. T/F?

10. $L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most 374 1s}\}$. L_{10} is regular. T/F?
Review questions

1. \(L_1 \subseteq \{0, 1\}^* \) be a finite language. \(L_1 \) is a set with finite number of strings. T/F?

2. \(L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\} \). The language \(L_2 \) is regular. T/F?

3. \(L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\} \). The language \(L_3 \) is regular. T/F?

4. \(L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\} \). The language \(L_4 \) is regular. T/F?

5. \(L_5 = \{0^i \mid i \text{ is not divisible by 17}\} \). \(L_5 \) is regular. T/F?

6. \(L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\} \). \(L_6 \) is regular. T/F?

7. \(L_7 = \{0^i \mid i \text{ is divisible by 2, 3, and 5}\} \). \(L_7 \) is regular. T/F?

8. \(L_8 = \{0^i \mid i \text{ is divisible by 2, 3, but not 5}\} \). \(L_8 \) is regular. T/F?

9. \(L_9 = \{0^i1^i \mid i \text{ is divisible by 2, 3, but not 5}\} \). \(L_9 \) is regular. T/F?

10. \(L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most 374 1s}\} \). \(L_{10} \) is regular. T/F?
Review questions

1. \(L_1 \subseteq \{0, 1\}^* \) be a finite language. \(L_1 \) is a set with finite number of strings. T/F?

2. \(L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\} \). The language \(L_2 \) is regular. T/F?

3. \(L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\} \). The language \(L_3 \) is regular. T/F?

4. \(L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\} \). The language \(L_4 \) is regular. T/F?

5. \(L_5 = \{0^i \mid i \text{ is not divisible by 17}\} \). \(L_5 \) is regular. T/F?

6. \(L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\} \). \(L_6 \) is regular. T/F?

7. \(L_7 = \{0^i \mid i \text{ is divisible by 2, 3, and 5}\} \). \(L_7 \) is regular. T/F?

8. \(L_8 = \{0^i \mid i \text{ is divisible by 2, 3, but not 5}\} \). \(L_8 \) is regular. T/F?

9. \(L_9 = \{0^i1^i \mid i \text{ is divisible by 2, 3, but not 5}\} \). \(L_9 \) is regular. T/F?

10. \(L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most } 374 \text{ 1s}\} \). \(L_{10} \) is regular. T/F?
Review questions

1. $L_1 \subseteq \{0, 1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?

2. $L_2 = \{0^i \mid i = 0, 1, \ldots, \infty\}$. The language L_2 is regular. T/F?

3. $L_3 = \{0^{2i} \mid i = 0, 1, \ldots, \infty\}$. The language L_3 is regular. T/F?

4. $L_4 = \{0^{17i} \mid i = 0, 1, \ldots, \infty\}$. The language L_4 is regular. T/F?

5. $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?

6. $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_6 is regular. T/F?

7. $L_7 = \{0^i \mid i \text{ is divisible by 2, 3, and 5}\}$. L_7 is regular. T/F?

8. $L_8 = \{0^i \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_8 is regular. T/F?

9. $L_9 = \{0^i1^i \mid i \text{ is divisible by 2, 3, but not 5}\}$. L_9 is regular. T/F?

10. $L_{10} = \{w \in \{0, 1\}^* \mid w \text{ has at most 374 1s}\}$. L_{10} is regular. T/F?
THE END

...(for now)
2.2

Regular Expressions
Regular Expressions

A way to denote regular languages

- simple **patterns** to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50’s: Stephen Kleene
 who has a star names after him.
Inductive Definition

A regular expression \(r \) over an alphabet \(\Sigma \) is one of the following:

Base cases:
- \(\emptyset \) denotes the language \(\emptyset \)
- \(\epsilon \) denotes the language \(\{\epsilon\} \).
- \(a \) denote the language \(\{a\} \).

Inductive cases: If \(r_1 \) and \(r_2 \) are regular expressions denoting languages \(R_1 \) and \(R_2 \) respectively then,
- \((r_1 + r_2) \) denotes the language \(R_1 \cup R_2 \)
- \((r_1 \cdot r_2) = r_1 \cdot r_2 = (r_1 r_2) \) denotes the language \(R_1 R_2 \)
- \((r_1)^* \) denotes the language \(R_1^* \)
Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:
- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,
- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(r_1 \cdot r_2) = r_1 \cdot r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*
Regular Languages vs Regular Expressions

<table>
<thead>
<tr>
<th>Regular Languages</th>
<th>Regular Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset regular</td>
<td>\emptyset denotes \emptyset</td>
</tr>
<tr>
<td>${\epsilon}$ regular</td>
<td>ϵ denotes ${\epsilon}$</td>
</tr>
<tr>
<td>${a}$ regular for $a \in \Sigma$</td>
<td>a denote ${a}$</td>
</tr>
<tr>
<td>$R_1 \cup R_2$ regular if both are</td>
<td>$r_1 + r_2$ denotes $R_1 \cup R_2$</td>
</tr>
<tr>
<td>$R_1 R_2$ regular if both are</td>
<td>$r_1 \cdot r_2$ denotes $R_1 R_2$</td>
</tr>
<tr>
<td>R^* is regular if R is</td>
<td>$r^$ denote $R^$</td>
</tr>
</tbody>
</table>

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

 Example: $(0 + 1)$ and $(1 + 0)$ denote the same language $\{0, 1\}$

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

- Omit parenthesis by adopting precedence order: \ast, concatenate, \ast.

 Example: $r^\ast s + t = ((r^\ast)s) + t$

- Omit parenthesis by associativity of each of these operations.

 Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

- Superscript \ast. For convenience, define $r^+ = rr^\ast$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

- Other notation: $r + s, r \cup s, r | s$ all denote union. rs is sometimes written as $r \cdot s$.
For a regular expression \(r \), \(L(r) \) is the language denoted by \(r \). Multiple regular expressions can denote the same language!

Example: \((0 + 1)\) and \((1 + 0)\) denote same language \(\{0, 1\} \)

Two regular expressions \(r_1 \) and \(r_2 \) are **equivalent** if \(L(r_1) = L(r_2) \).

- Omit parenthesis by adopting precedence order: \(\ast \), concatenate, \(+\).

 Example: \(r^*s + t = ((r^*)s) + t \)

- Omit parenthesis by associativity of each of these operations.

 Example: \(rst = (rs)t = r(st) \), \(r + s + t = r + (s + t) = (r + s) + t \).

- Superscript \(+\). For convenience, define \(r^+ = rr^* \). Hence if \(L(r) = R \) then \(L(r^+) = R^+ \).

- Other notation: \(r + s \), \(r \cup s \), \(r | s \) all denote union. \(rs \) is sometimes written as \(r \circ s \).
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, $+$. **Example:** $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations. **Example:** $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

Superscript \ast. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, \cup.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

Superscript \ast. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r | s$ all denote union. rs is sometimes written as $r \cdot s$.
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
 - Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.
 - Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations.
 - Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.
- Superscript $+$. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.
- Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

- Omit parenthesis by adopting precedence order: \ast, concatenate, \ast.
 Example: $r \ast s + t = ((r \ast) s) + t$

- Omit parenthesis by associativity of each of these operations.
 Example: $rst = (rs) t = r(s t)$, $r + s + t = r + (s + t) = (r + s) + t$.

- Superscript \ast. For convenience, define $r^\ast = rr^\ast$. Hence if $L(r) = R$ then $L(r^\ast) = R^\ast$.

- Other notation: $r + s$, $r \cup s$, $r | s$ all denote union. rs is sometimes written as $r \cdot s$.
Skills

- Given a language \(L \) “in mind” (say an English description) we would like to write a regular expression for \(L \) (if possible)
- Given a regular expression \(r \) we would like to “understand” \(L(r) \) (say by giving an English description)
Skills

- Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to “understand” $L(r)$ (say by giving an English description)
THE END

...(for now)
2.2.1
Some examples of regular expressions
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1's divisible by 3
- \(\emptyset\): \(
\{\}
\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- \emptyset: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- \emptyset: $\{}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10*10^*10^*)^*\): strings with number of 1's divisible by 3
- \(\emptyset\): \(
\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1's divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1's divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0*10*10^*10^*)^*\): strings with number of 1's divisible by 3
- \(\emptyset\): \(
\) strings without two consecutive 0s and no two consecutive 1s
- \((\epsilon + 1)(01)(\epsilon + 0)^*\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset0\): \(\{\}\)
- \((\epsilon + 1)(01)(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0*10*10*10^*)^*$: strings with number of 1's divisible by 3
- \emptyset: $\{\}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1's divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: $(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$
- bitstrings with an even number of 1's
 one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1’s
 one answer: 0^*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: $(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$

- bitstrings with an even number of 1’s
 one answer: $0^* + (0*10*10^*)^*$

- bitstrings with an odd number of 1’s
 one answer: $0*1r$ where r is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do **not** contain 011 as a substring

- Hard: bitstrings with an odd number of 1s **and** an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: $(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$

- bitstrings with an even number of 1's
 one answer: $0^* + (0^*10^*10^*)^*$

- bitstrings with an odd number of 1's
 one answer: 0^*1r where r is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Bit strings with odd number of 0s and 1s

The regular expression is

\[(00 + 11)^*(01 + 10)\]
\[\left(00 + 11 + (01 + 10)(00 + 11)^*(01 + 10)\right)^*\]

(Solved using techniques to be presented in the following lectures...)
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r, $L(r^* r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^* r$
- $(rs)^* r = r(sr)^*$
- $(r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$

Question: How does one prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive rules.
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r, $L(r^* r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^* r$
- $(rs)^* r = r(sr)^*$
- $(r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$

Question: How does one prove an identity?

By induction. On what? Length of r since r is a string obtained from specific inductive rules.
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r, $L(r^* r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^* r$
- $(rs)^* r = r(sr)^*$
- $(r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s)^* = \ldots$

Question: How does one prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive rules.
Regular expression identities

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r + s)^* = (r^*s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$

Question: How does one prove an identity?

By induction. On what? Length of r since r is a string obtained from specific inductive rules.
THE END

...(for now)
2.2.2
An example of a non-regular language
A non-regular language and other closure properties

Consider \(L = \{ 0^n1^n \mid n \geq 0 \} = \{ \epsilon, 01, 0011, 000111, \ldots \} \).

Theorem

\[L = \{ 0^n1^n \mid n \geq 0 \} = \{ \epsilon, 01, 0011, 000111, \ldots \}. \]

The language \(L \) is **not** a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\overline{R_1} \) (complement of \(R_1 \)) regular?
A non-regular language and other closure properties

Consider $L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$.

Theorem

$L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$.
The language L is not a regular language.

How do we prove it?

Other questions:
- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is $\overline{R_1}$ (complement of R_1) regular?
A non-regular language and other closure properties

Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \).

Theorem

\(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \).

The language \(L \) is not a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\overline{R_1} \) (complement of \(R_1 \)) regular?
A non-regular language and other closure properties

Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \).

Theorem

\[L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \]

The language \(L \) is not a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\overline{R_1} \) (complement of \(R_1 \)) regular?
Theorem

\[L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}. \]

The language \(L \) *is not a regular language.*