24.4
Proof of Cook-Levin Theorem
24.4.1

Statement and sketch of idea for the proof
Cook-Levin Theorem

Theorem 24.1 (Cook-Levin).

SAT is NP-Complete.

We have already seen that *SAT* is in *NP*.

Need to prove that every language \(L \in \text{NP}, L \leq_p \text{SAT} \)

Difficulty: Infinite number of languages in NP. Must simultaneously show a generic reduction strategy.
Cook-Levin Theorem

Theorem 24.1 (Cook-Levin).

SAT is NP-Complete.

We have already seen that *SAT* is in *NP*.

Need to prove that every language $L \in \text{NP}$, $L \leq_p \text{SAT}$

Difficulty: Infinite number of languages in *NP*. Must simultaneously show a generic reduction strategy.
The plot against SAT
High-level plan to proving the Cook-Levin theorem

What does it mean that $L \in \text{NP}$?
$L \in \text{NP}$ implies that there is a non-deterministic TM M and polynomial $p()$ such that

\[L = \{ x \in \Sigma^* \mid M \text{ accepts } x \text{ in at most } p(|x|) \text{ steps} \} \]

Input: M, x, p.
Question: Does M stops on input x after $p(|x|)$ steps?

Describe a reduction R that computes from M, x, p a SAT formula φ.
- R takes as input a string x and outputs a SAT formula φ
- R runs in time polynomial in $|x|, |M|$
- $x \in L$ if and only if φ is satisfiable
The plot against SAT

High-level plan to proving the Cook-Levin theorem

What does it mean that $L \in \text{NP}$?

$L \in \text{NP}$ implies that there is a non-deterministic TM M and polynomial $p()$ such that

$$L = \{x \in \Sigma^* \mid M \text{ accepts } x \text{ in at most } p(|x|) \text{ steps}\}$$

Input: M, x, p

Question: Does M stops on input x after $p(|x|)$ steps?

Describe a reduction R that computes from M, x, p a SAT formula φ.

- R takes as input a string x and outputs a SAT formula φ
- R runs in time polynomial in $|x|, |M|$
- $x \in L$ if and only if φ is satisfiable
The plot against SAT

High-level plan to proving the Cook-Levin theorem

What does it mean that $L \in \text{NP}$?

$L \in \text{NP}$ implies that there is a non-deterministic TM M and polynomial $p()$ such that

$$L = \{x \in \Sigma^* \mid M \text{ accepts } x \text{ in at most } p(|x|) \text{ steps}\}$$

Input: M, x, p.

Question: Does M stops on input x after $p(|x|)$ steps?

Describe a reduction R that computes from M, x, p a SAT formula φ.

- R takes as input a string x and outputs a SAT formula φ
- R runs in time polynomial in $|x|, |M|$
- $x \in L$ if and only if φ is satisfiable
The plot against SAT continued

\[\langle x, M, p \rangle \xrightarrow{R} \varphi \]

poly-time computable

\(\varphi \) is satisfiable if and only if \(x \in L \)

\(\varphi \) is satisfiable if and only if nondeterministic \(M \) accepts \(x \) in \(p(|x|) \) steps

BIG IDEA

- \(\varphi \) will express “\(M \) on input \(x \) accepts in \(p(|x|) \) steps”
- \(\varphi \) will encode a computation history of \(M \) on \(x \)

\(\varphi \): CNF formula s.t if we have a satisfying assignment to it \(\implies \) accepting computation of \(M \) on \(x \) down to the last details (where the head is, what transition is chosen, what the tape contents are, at each step, etc).
The plot against SAT continued

\[\langle x, M, p \rangle \rightarrow R \rightarrow \varphi \]

poly-time computable

\[\varphi \] is satisfiable if and only if \(x \in L \)

\[\varphi \] is satisfiable if and only if nondeterministic \(M \) accepts \(x \) in \(p(|x|) \) steps

BIG IDEA

- \(\varphi \) will express “\(M \) on input \(x \) accepts in \(p(|x|) \) steps”
- \(\varphi \) will encode a computation history of \(M \) on \(x \)

\(\varphi \): CNF formula s.t if we have a satisfying assignment to it \(\implies \) accepting computation of \(M \) on \(x \) down to the last details (where the head is, what transition is chosen, what the tape contents are, at each step, etc).
The plot against SAT continued

\[\langle x, M, p \rangle \xrightarrow{R} \varphi \]

poly-time computable

\(\varphi \) is satisfiable if and only if \(x \in L \)
\(\varphi \) is satisfiable if and only if nondeterministic \(M \) accepts \(x \) in \(p(|x|) \) steps

BIG IDEA

- \(\varphi \) will express “\(M \) on input \(x \) accepts in \(p(|x|) \) steps”
- \(\varphi \) will encode a computation history of \(M \) on \(x \)

\(\varphi \): CNF formula s.t if we have a satisfying assignment to it \(\iff \) accepting computation of \(M \) on \(x \) down to the last details (where the head is, what transition is chosen, what the tape contents are, at each step, etc).
The plot against SAT continued

\[\langle x, M, p \rangle \xrightarrow{R} \varphi \]

poly-time computable

\varphi \text{ is satisfiable if and only if } x \in L
\varphi \text{ is satisfiable if and only if nondeterministic } M \text{ accepts } x \text{ in } p(|x|) \text{ steps}

BIG IDEA

- \varphi \text{ will express } "M \text{ on input } x \text{ accepts in } p(|x|) \text{ steps}"
- \varphi \text{ will encode a computation history of } M \text{ on } x

\varphi: \text{ CNF formula s.t if we have a satisfying assignment to it } \implies \text{ accepting computation of } M \text{ on } x \text{ down to the last details (where the head is, what transition is chosen, what the tape contents are, at each step, etc).}
The Matrix Executions

Tableau of Computation

M runs in time $p(|x|)$ on x. Entire computation of M on x can be represented by a “tableau”

Row i gives contents of all cells at time i
At time 0 tape has input x followed by blanks
Each row long enough to hold all cells M might ever have scanned.
Four types of variables to describe computation of M on x

- $T(b, h, i)$: tape cell at position h holds symbol b at time i.
 For $h = 1, \ldots, p(|x|)$, $b \in \Gamma$, $i = 0, \ldots, p(|x|)$.

- $H(h, i)$: read/write head is at position h at time i.
 For $h = 1, \ldots, p(|x|)$, and $i = 0, \ldots, p(|x|)$.

- $S(q, i)$ state of M is q at time i.
 For all $q \in Q$ and $i = 0, \ldots, p(|x|)$.

- $I(j, i)$ instruction number j is executed at time i.
 M is non-deterministic, need to specify transitions in some way. Number transitions as $1, 2, \ldots, \ell$ where jth transition is $< q_j, b_j, q_j', b_j', d_j >$ indication $(q_j', b_j', d_j) \in \delta(q_j, b_j)$, direction $d_j \in \{-1, 0, 1\}$.

Number of variables is $O(p(|x|)^2|M|^2)$.
Notation

Some abbreviations for ease of notation

\(\bigwedge_{k=1}^m x_k\) means \(x_1 \land x_2 \land \ldots \land x_m\)

\(\bigvee_{k=1}^m x_k\) means \(x_1 \lor x_2 \lor \ldots \lor x_m\)

\(\bigoplus(x_1, x_2, \ldots, x_k)\) is a formula that means exactly one of \(x_1, x_2, \ldots, x_m\) is true. Can be converted to \text{CNF} \text{ form}

CNF formula showing making sure that at most one variable is assigned value \(1\):

\[
\bigwedge_{1 \leq i < j \leq k} (\overline{x}_i \lor \overline{x}_j)
\]

Making sure that one of the variables is true: \(\bigvee_{i=1}^{k} x_i\).

\[
\bigoplus(x_1, x_2, \ldots, x_k) = \bigwedge_{1 \leq i < j \leq k} (\overline{x}_i \lor \overline{x}_j) \land (x_1 \lor x_2 \lor \cdots \lor x_k).
\]
Notation

Some abbreviations for ease of notation
\[\bigwedge_{k=1}^{m} x_k \] means \(x_1 \land x_2 \land \ldots \land x_m \)

\[\bigvee_{k=1}^{m} x_k \] means \(x_1 \lor x_2 \lor \ldots \lor x_m \)

\(\bigoplus(x_1, x_2, \ldots, x_k) \) is a formula that means exactly one of \(x_1, x_2, \ldots, x_m \) is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:

\[\bigwedge_{1 \leq i < j \leq k} (\overline{x}_i \lor \overline{x}_j) \]

Making sure that one of the variables is true: \(\bigvee_{i=1}^{k} x_i \).

\[\bigoplus(x_1, x_2, \ldots, x_k) = \bigwedge_{1 \leq i < j \leq k} (\overline{x}_i \lor \overline{x}_j) \bigwedge (x_1 \lor x_2 \lor \ldots \lor x_k) . \]
Notation

Some abbreviations for ease of notation

\(\bigwedge_{k=1}^{m} x_k \) means \(x_1 \land x_2 \land \ldots \land x_m \)

\(\bigvee_{k=1}^{m} x_k \) means \(x_1 \lor x_2 \lor \ldots \lor x_m \)

\(\bigoplus(x_1, x_2, \ldots, x_k) \) is a formula that means exactly one of \(x_1, x_2, \ldots, x_m \) is true. Can be converted to CNF form.

CNF formula showing making sure that at most one variable is assigned value 1:

\[
\bigwedge_{1 \leq i < j \leq k} (\overline{x_i} \lor \overline{x_j})
\]

Making sure that one of the variables is true: \(\bigvee_{i=1}^{k} x_i \).

\[
\bigoplus(x_1, x_2, \ldots, x_k) = \bigwedge_{1 \leq i < j \leq k} (\overline{x_i} \lor \overline{x_j}) \land (x_1 \lor x_2 \lor \cdots \lor x_k).
\]
Notation

Some abbreviations for ease of notation

\(\bigwedge_{k=1}^{m} x_k \) means \(x_1 \land x_2 \land \ldots \land x_m \)

\(\bigvee_{k=1}^{m} x_k \) means \(x_1 \lor x_2 \lor \ldots \lor x_m \)

\(\bigoplus(x_1, x_2, \ldots, x_k) \) is a formula that means exactly one of \(x_1, x_2, \ldots, x_m \) is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:

\[
\bigwedge_{1\leq i<j\leq k} (\overline{x}_i \lor \overline{x}_j)
\]

Making sure that one of the variables is true: \(\bigvee_{i=1}^{k} x_i \).

\[
\bigoplus(x_1, x_2, \ldots, x_k) = \bigwedge_{1\leq i<j\leq k} (\overline{x}_i \lor \overline{x}_j) \land (x_1 \lor x_2 \lor \cdots \lor x_k).
\]
Clauses of φ

φ is the conjunction of 8 clause groups:

$$\varphi = \bigwedge_{i=1}^{12} \varphi_i$$

where each φ_i is a CNF formula. Described in subsequent slides.

Property: φ is satisfied \iff there is an execution of M on x that accepts the language in $p(|x|)$ time.
THE END

...

(for now)