24.3.3

Showing NP-Completeness of 3-COLORING
24.3.3.1
The variable assignment gadget
3-Coloring is **NP-Complete**

- **3-Coloring** is in **NP**.
 - **Certificate:** for each node a color from \(\{1, 2, 3\}\).
 - **Certifier:** Check if for each edge \((u, v)\), the color of \(u\) is different from that of \(v\).
- **Hardness:** We will show \(3\text{-SAT} \leq_P 3\text{-Coloring}\).
Reduction idea

1. \(\varphi \): Given 3SAT formula (i.e., 3CNF formula).
2. \(\varphi \): variables \(x_1, \ldots, x_n \) and clauses \(C_1, \ldots, C_m \).
3. Create graph \(G_\varphi \) s.t. \(G_\varphi \) 3-colorable \(\iff \varphi \) satisfiable.
 - encode assignment \(x_1, \ldots, x_n \) in colors assigned nodes of \(G_\varphi \).
 - create triangle with node True, False, Base
 - for each variable \(x_i \) two nodes \(v_i \) and \(\bar{v}_i \) connected in a triangle with common Base
 - If graph is 3-colored, either \(v_i \) or \(\bar{v}_i \) gets the same color as True. Interpret this as a truth assignment to \(v_i \)
 - Need to add constraints to ensure clauses are satisfied (next phase)
Reduction idea

1. φ: Given $\textbf{3SAT}$ formula (i.e., $\textbf{3CNF}$ formula).
2. φ: variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m.
3. Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ}.
 - create triangle with node True, False, Base.
 - for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base.
 - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i.
 - Need to add constraints to ensure clauses are satisfied (next phase).
Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).
2. φ: variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m.
3. Create graph G_φ s.t. G_φ 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_φ.
 - create triangle with node True, False, Base
 - for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
 - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - Need to add constraints to ensure clauses are satisfied (next phase)
Reduction idea

1. \(\varphi \): Given \textbf{3SAT} formula (i.e., \textbf{3CNF} formula).
2. \(\varphi \): variables \(x_1, \ldots, x_n \) and clauses \(C_1, \ldots, C_m \).
3. Create graph \(G_\varphi \) s.t. \(G_\varphi \) 3-colorable \(\iff \) \(\varphi \) satisfiable.
 - encode assignment \(x_1, \ldots, x_n \) in colors assigned nodes of \(G_\varphi \).
 - create triangle with node True, False, Base
 - for each variable \(x_i \) two nodes \(v_i \) and \(\bar{v}_i \) connected in a triangle with common Base
 - If graph is 3-colored, either \(v_i \) or \(\bar{v}_i \) gets the same color as True. Interpret this as a truth assignment to \(v_i \)
 - Need to add constraints to ensure clauses are satisfied (next phase)
Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).
2. φ: variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m.
3. Create graph G_φ s.t. G_φ 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_φ.
 - create triangle with node True, False, Base
 - for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
 - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - Need to add constraints to ensure clauses are satisfied (next phase)
Reduction idea

1. \(\varphi \): Given 3SAT formula (i.e., 3CNF formula).
2. \(\varphi \): variables \(x_1, \ldots, x_n \) and clauses \(C_1, \ldots, C_m \).
3. Create graph \(G_\varphi \) s.t. \(G_\varphi \) 3-colorable \(\iff \) \(\varphi \) satisfiable.
 - encode assignment \(x_1, \ldots, x_n \) in colors assigned nodes of \(G_\varphi \).
 - create triangle with node True, False, Base
 - for each variable \(x_i \) two nodes \(v_i \) and \(\bar{v}_i \) connected in a triangle with common Base
 - If graph is 3-colored, either \(v_i \) or \(\bar{v}_i \) gets the same color as True. Interpret this as a truth assignment to \(v_i \)
 - Need to add constraints to ensure clauses are satisfied (next phase)
Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).
2. φ: variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m.
3. Create graph G_φ s.t. G_φ 3-colorable \iff φ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_φ.
 - create triangle with node True, False, Base
 - for each variable x_i two nodes v_i and \overline{v}_i connected in a triangle with common Base
 - If graph is 3-colored, either v_i or \overline{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - Need to add constraints to ensure clauses are satisfied (next phase)
Assignment encoding using 3-coloring
THE END

...

(for now)