24.3

NP-Completeness of Graph Coloring
24.3.1
The coloring problem
Problem: Graph Coloring

Instance: \(G = (V, E) \): Undirected graph, integer \(k \).

Question: Can the vertices of the graph be colored using \(k \) colors so that vertices connected by an edge do not get the same color?
Graph 3-Coloring

Problem: 3 Coloring

Instance: $G = (V, E)$: Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?
Graph 3-Coloring

Problem: 3 Coloring

Instance: $G = (V, E)$: Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?
Graph Coloring

1. **Observation**: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.

2. G can be partitioned into k independent sets $\iff G$ is k-colorable.

3. Graph 2-Coloring can be decided in polynomial time.

4. G is 2-colorable $\iff G$ is bipartite.

5. There is a linear time algorithm to check if G is bipartite using **BFS** (we saw this earlier).
Graph Coloring

1. **Observation**: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.

2. G can be partitioned into k independent sets $\iff G$ is k-colorable.

3. Graph 2-Coloring can be decided in polynomial time.

4. G is 2-colorable $\iff G$ is bipartite.

5. There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).
Graph Coloring

1. **Observation**: If \(G \) is colored with \(k \) colors then each color class (nodes of same color) form an independent set in \(G \).

2. \(G \) can be partitioned into \(k \) independent sets \(\iff \) \(G \) is \(k \)-colorable.

3. Graph 2-Coloring can be decided in polynomial time.

4. \(G \) is 2-colorable \(\iff \) \(G \) is bipartite.

5. There is a linear time algorithm to check if \(G \) is bipartite using **BFS** (we saw this earlier).
Graph Coloring

1. Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.

2. G can be partitioned into k independent sets $\iff G$ is k-colorable.

3. Graph 2-Coloring can be decided in polynomial time.

4. G is 2-colorable $\iff G$ is bipartite.

5. There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).
Graph Coloring

1. **Observation:** If G is colored with k colors then each color class (nodes of same color) form an independent set in G.
2. G can be partitioned into k independent sets $\iff G$ is k-colorable.
3. Graph 2-Coloring can be decided in polynomial time.
4. G is 2-colorable $\iff G$ is bipartite.
5. There is a linear time algorithm to check if G is bipartite using **BFS** (we saw this earlier).
THE END

...

(for now)