23.4
Hamiltonian cycle in undirected graph
Hamiltonian Cycle

Problem 23.1.

Input Given undirected graph $G = (V, E)$

Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?
Theorem 23.2.

Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- The problem is in **NP**; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem.
Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction
- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})
Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path.

Reduction

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})
Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})
Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path.

Reduction

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}.
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in}).

![Diagram showing the reduction process](image)
Hamiltonian cycle reduction

Undirected to directed case
Reduction: Wrap-up

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)
THE END

...

(for now)