23.3.4

If there is a Hamiltonian cycle $\Rightarrow \exists$ satisfying assignment
Reduction: Hamiltonian cycle $\iff \exists$ satisfying assignment

We are given a Hamiltonian cycle in G_φ:

$x_1 \lor \neg x_2 \lor x_4$

$\neg x_1 \lor \neg x_2 \lor \neg x_3$

Want to extract satisfying assignment...
Reduction: Hamiltonian cycle $\iff \exists$ satisfying assignment

No shenanigan: Hamiltonian cycle cannot leave a row in the middle
Reduction: Hamiltonian cycle $\iff \exists$ satisfying assignment

No shenanigan: Hamiltonian cycle cannot leave a row in the middle
Reduction: Hamiltonian cycle \[\iff\exists\text{ satisfying assignment}\]

No shenanigan: Hamiltonian cycle cannot leave a row in the middle
Reduction: Hamiltonian cycle $\iff \exists$ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle

Conclude: Hamiltonian cycle must go through each row completely from left to right, or right to left. As such, can be interpreted as a valid assignment.
Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_φ

- If Π enters c_j (vertex for clause C_j) from vertex $3j$ on path i then it must leave the clause vertex on edge to $3j + 1$ on the same path i
 - If not, then only unvisited neighbor of $3j + 1$ on path i is $3j + 2$
 - Thus, we don’t have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle

- Similarly, if Π enters c_j from vertex $3j + 1$ on path i then it must leave the clause vertex c_j on edge to $3j$ on path i
Thus, vertices visited immediately before and after C_i are connected by an edge.

We can remove c_j from cycle, and get Hamiltonian cycle in $G - c_j$.

Consider Hamiltonian cycle in $G - \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment.
Hamiltonian Cycle \implies Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_i are connected by an edge.
- We can remove c_j from cycle, and get Hamiltonian cycle in $G - c_j$.
- Consider Hamiltonian cycle in $G - \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment.
Hamiltonian Cycle \(\implies\) Satisfying assignment (contd)

- Thus, vertices visited immediately before and after \(C_i\) are connected by an edge
- We can remove \(c_j\) from cycle, and get Hamiltonian cycle in \(G - c_j\)
- Consider Hamiltonian cycle in \(G - \{c_1, \ldots c_m\}\); it traverses each path in only one direction, which determines the truth assignment

\[
\neg x_1 \lor \neg x_2 \lor \neg x_3
\]

\[
\begin{align*}
x_1 &= 0 \\
x_2 &= 1 \\
x_3 &= 0 \\
x_4 &= 1
\end{align*}
\]
Thus, vertices visited immediately before and after C_i are connected by an edge.

We can remove c_j from cycle, and get Hamiltonian cycle in $G - c_j$.

Consider Hamiltonian cycle in $G - \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment.
Correctness Proof

We just proved:

Lemma 23.2.

\[G_\varphi \text{ has a Hamiltonian cycle } \iff \varphi \text{ has a satisfying assignment } \alpha. \]

Lemma 23.3.

\(\varphi \) has a satisfying assignment iff \(G_\varphi \) has a Hamiltonian cycle.

Proof.

Follows from Lemma 23.1 and Lemma 23.2.
Correctness Proof

We just proved:

Lemma 23.2.

\[G_\varphi \text{ has a Hamiltonian cycle} \iff \varphi \text{ has a satisfying assignment } \alpha. \]

Lemma 23.3.

\varphi \text{ has a satisfying assignment iff } G_\varphi \text{ has a Hamiltonian cycle.}

Proof.

Follows from Lemma 23.1 and Lemma 23.2.
Summary

What we did:

1. Showed that Directed Hamiltonian Cycle is in NP.
2. Provided a polynomial time reduction from 3SAT to Directed Hamiltonian Cycle.
3. Proved that φ satisfiable $\iff G_\varphi$ is Hamiltonian.

Theorem 23.4.
The problem Hamiltonian Cycle in directed graphs is NP-Complete.
Summary

What we did:

1. Showed that Directed Hamiltonian Cycle is in NP.
2. Provided a polynomial time reduction from 3SAT to Directed Hamiltonian Cycle.
3. Proved that φ satisfiable $\iff G_\varphi$ is Hamiltonian.

Theorem 23.4.
The problem Hamiltonian Cycle in directed graphs is NP-Complete.
THE END

...

(for now)