23.3

NP-Completeness of Hamiltonian Cycle
23.3.1
Reduction from 3SAT to Hamiltonian Cycle: Basic idea
Directed Hamiltonian Cycle

Input Given a directed graph $G = (V, E)$ with n vertices

Goal Does G have a Hamiltonian cycle?

▶ A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

![Graph diagram]
Directed Hamiltonian Cycle

Input Given a directed graph \(G = (V, E) \) with \(n \) vertices

Goal Does \(G \) have a Hamiltonian cycle?

► A Hamiltonian cycle is a cycle in the graph that visits every vertex in \(G \) exactly once
Is the following graph Hamiltonian?

(A) Yes.
(B) No.
Directed Hamiltonian Cycle is **NP-Complete**

- Directed Hamiltonian Cycle is in **NP**: exercise
- **Hardness**: We will show $3SAT \leq_P Directed\ Hamiltonian\ Cycle$.
Reduction construction
From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:
 ▶ Input: 3SAT formula φ
 ▶ Output: A graph G_{φ}.
 ▶ Running time is polynomial.
 ▶ Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.

2. Given 3SAT formula φ create a graph G_{φ} such that
 ▶ G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
 ▶ G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m.
Reduction construction
From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:
 ▶ Input: 3SAT formula φ
 ▶ Output: A graph G_φ.
 ▶ Running time is polynomial.
 ▶ Requirement: φ is satisfiable $\iff G_\varphi$ is Hamiltonian.

2. Given 3SAT formula φ create a graph G_φ such that
 ▶ G_φ has a Hamiltonian cycle if and only if φ is satisfiable
 ▶ G_φ should be constructible from φ by a polynomial time algorithm A

3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m.
Reduction construction
From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:
 ▶ Input: 3SAT formula \(\varphi \)
 ▶ Output: A graph \(G_\varphi \).
 ▶ Running time is polynomial.
 ▶ Requirement: \(\varphi \) is satisfiable \(\iff \) \(G_\varphi \) is Hamiltonian.

2. Given 3SAT formula \(\varphi \) create a graph \(G_\varphi \) such that
 ▶ \(G_\varphi \) has a Hamiltonian cycle if and only if \(\varphi \) is satisfiable
 ▶ \(G_\varphi \) should be constructible from \(\varphi \) by a polynomial time algorithm \(\mathcal{A} \)

3. Notation: \(\varphi \) has \(n \) variables \(x_1, x_2, \ldots, x_n \) and \(m \) clauses \(C_1, C_2, \ldots, C_m \).
Reduction construction
From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:
 ▶ Input: **3SAT** formula φ
 ▶ Output: A graph G_{φ}.
 ▶ Running time is polynomial.
 ▶ Requirement: φ is satisfiable $\iff G_{\varphi}$ is Hamiltonian.

2. Given **3SAT** formula φ create a graph G_{φ} such that
 ▶ G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
 ▶ G_{φ} should be constructible from φ by a polynomial time algorithm A

3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m.
Reduction construction
From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:
 ▶ Input: 3SAT formula φ
 ▶ Output: A graph G_{φ}.
 ▶ Running time is polynomial.
 ▶ Requirement: φ is satisfiable $\iff G_{\varphi}$ is Hamiltonian.

2. Given 3SAT formula φ create a graph G_{φ} such that
 ▶ G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
 ▶ G_{φ} should be constructible from φ by a polynomial time algorithm A

3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m.
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0$
Encoding assignments

Converting \(\varphi \) to a graph

Given a formula with \(n \) variables, we need a graph with \(2^n \) different Hamiltonian paths, that can encode their assignments.

\[
x_1 = 1, \ x_2 = 1, \ x_3 = 0, \ x_4 = 0
\]
Encoding assignments

Converting \(\varphi \) to a graph

Given a formula with \(n \) variables, we need a graph with \(2^n \) different Hamiltonian paths, that can encode their assignments.

\[
\begin{align*}
\ x_1 &= 0, \ x_2 = 0, \ x_3 = 1, \ x_4 = 0
\end{align*}
\]
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 1$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0$
Encoding assignments
Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 01$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 1$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$
Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.
THE END

...

(for now)