NP and NP Completeness

Lecture 23
Tuesday, December 1, 2020
23.1

NP-Completeness: Cook-Levin Theorem
23.1.1 Completeness
NP: Non-deterministic polynomial

Definition 23.1.

A decision problem is in \textbf{NP}, if it has a polynomial time certifier, for all the YES instances.

Definition 23.2.

A decision problem is in $\textbf{co-NP}$, if it has a polynomial time certifier, for all the NO instances.

Example 23.3.

1. 3SAT is in \textbf{NP}.
2. But $\textbf{Not3SAT}$ is in $\textbf{co-NP}$.
In the beginning...
In the beginning...

Undecidable
In the beginning...

Undecidable

EXP
In the beginning...

- Undecidable

- EXP

- PSPACE
In the beginning...
In the beginning...
In the beginning...

- Undecidable
- NP
- co-NP
- NP-Hard
- P
- PSPACE
- EXP
In the beginning...
In the beginning...
In the beginning...

Undecidable

NP – Hard

NP

NP- Hard

NPC

P

co-NP

PSPACE

EXP
“Hardest” Problems

Question
What is the hardest problem in \textbf{NP}? How do we define it?

Towards a definition
1. Hardest problem must be in \textbf{NP}.
2. Hardest problem must be at least as “difficult” as every other problem in \textbf{NP}.
NP-Complete Problems

Definition 23.4.
A problem X is said to be **NP-Complete** if

1. $X \in \text{NP}$, and
2. (Hardness) For any $Y \in \text{NP}$, $Y \leq_P X$.

Proposition 23.5.

Suppose X is NP-Complete. Then X can be solved in polynomial time $\iff P = NP$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time

0.1 Let $Y \in NP$. We know $Y \leq_P X$.
0.2 We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
0.3 Thus, every problem $Y \in NP$ is such that $Y \in P$.
0.4 $\iff NP \subseteq P$.
0.5 Since $P \subseteq NP$, we have $P = NP$.

\Leftarrow Since $P = NP$, and $X \in NP$, we have a polynomial time algorithm for X. \square
Definition 23.6.

A problem X is said to be **NP-Hard** if

1. (Hardness) For any $Y \in \text{NP}$, we have that $Y \leq_p X$.

An **NP-Hard** problem need not be in **NP**!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.
Consequences of proving NP-Completeness

If \(X \) is NP-Complete

1. Since we believe \(P \neq NP \),
2. and solving \(X \) implies \(P = NP \).

\(X \) is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for \(X \).
(This is proof by mob opinion — take with a grain of salt.)
Consequences of proving **NP-Completeness**

If X is **NP-Complete**

1. Since we believe $P \neq NP$,
2. and solving X implies $P = NP$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
Consequences of proving NP-Completeness

If X is NP-Complete

1. Since we believe $P \neq NP$,
2. and solving X implies $P = NP$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
Consequences of proving NP-Completeness

If X is NP-Complete

1. Since we believe $P \neq NP$,
2. and solving X implies $P = NP$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)
THE END

...

(for now)