22.2.3 Examples to problems with efficient certifiers
Example: Vertex Cover

Problem: Does G have a vertex cover of size $\leq k$?

Certificate: $S \subseteq V$.

Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.
Example: SAT

Problem: Does formula φ have a satisfying truth assignment?

Certificate: Assignment a of $0/1$ values to each variable.

Certifier: Check each clause under a and say “yes” if all clauses are true.
Example: Composites

Problem: Composite

Instance: A number \(s \).
Question: Is the number \(s \) a composite?

1. Problem: Composite.
 1. Certificate: A factor \(t \leq s \) such that \(t \neq 1 \) and \(t \neq s \).
 2. Certifier: Check that \(t \) divides \(s \).
Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M.

Question: Is $L(M) = \Sigma^*$, that is, does M accept all strings?

1. Problem: NFA Universality.

1. **Certificate:** A DFA M' equivalent to M

2. **Certifier:** Check that $L(M') = \Sigma^*$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in NP.

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M.

Question: Is $L(M) = \Sigma^*$, that is, does M accept all strings?

Problem: NFA Universality.

1. **Certificate:** A DFA M' equivalent to M
2. **Certifier:** Check that $L(M') = \Sigma^*$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in NP.
Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n

Question: Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_k} = \beta_{i_1} \beta_{i_2} \ldots \beta_{i_k}$

Certificate: A sequence of indices i_1, i_2, \ldots, i_k

Certifier: Check that $\alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_k} = \beta_{i_1} \beta_{i_2} \ldots \beta_{i_k}$

PCP = Posts Correspondence Problem and it is undecidable!

Implies no finite bound on length of certificate!
Example: A String Problem

Problem: **PCP**

| **Instance:** Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n
| **Question:** Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k} = \beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

1. **Problem: PCP**
 1. **Certificate:** A sequence of indices i_1, i_2, \ldots, i_k
 2. **Certifier:** Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k} = \beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

PCP = Posts Correspondence Problem and it is undecidable!
Implies no finite bound on length of certificate!
THE END

... (for now)