22.2.2
Certifiers/Verifiers
Certifiers

Definition 22.1.

An algorithm \(C(\cdot, \cdot) \) is a **certifier** for problem \(X \) if the following two conditions hold:

- For every \(s \in X \) there is some string \(t \) such that \(C(s, t) = \text{"yes"} \)
- If \(s \not\in X \), \(C(s, t) = \text{"no"} \) for every \(t \).

The string \(t \) is called a **certificate** or **proof** for \(s \).
Efficient (polynomial time) Certifiers

Definition 22.2 (Efficient Certifier).

A certifier C is an **efficient certifier** for problem X if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that $C(s, t) = \text{"yes"}$ and $|t| \leq p(|s|)$.
- If $s \notin X$, $C(s, t) = \text{"no"}$ for every t.
- $C(\cdot, \cdot)$ runs in polynomial time in the size of s.

25 / 48
Example: Independent Set

Problem: Does $G = (V, E)$ have an independent set of size $\geq k$?

Certificate: Set $S \subseteq V$.

Certifier: Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.
THE END

...(for now)