20.7

MST: An epilogue
Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$.
If m is $O(n)$ then running time is $\Omega(n \log n)$.

Question
Is there a linear time ($O(m + n)$ time) algorithm for MST?

1. $O(m \log^* m)$ time [Fredman and Tarjan 1987]
2. $O(m + n)$ time using bit operations in RAM model [Fredman, Willard 1994]
3. $O(m + n)$ expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]
4. $O((n + m)\alpha(m, n))$ time [Chazelle 2000]
5. Still open: Is there an $O(n + m)$ time deterministic algorithm in the comparison model?
Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: $O(n \log n + m)$.
If m is $O(n)$ then running time is $\Omega(n \log n)$.

Question
Is there a linear time ($O(m + n)$ time) algorithm for MST?

1. $O(m \log^* m)$ time [Fredman and Tarjan 1987]
2. $O(m + n)$ time using bit operations in RAM model [Fredman, Willard 1994]
3. $O(m + n)$ expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]
4. $O((n + m)\alpha(m, n))$ time [Chazelle 2000]
5. Still open: Is there an $O(n + m)$ time deterministic algorithm in the comparison model?
Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$.
If m is $O(n)$ then running time is $\Omega(n \log n)$.

Question

Is there a linear time ($O(m + n)$ time) algorithm for MST?

1. $O(m \log^* m)$ time [Fredman and Tarjan 1987]
2. $O(m + n)$ time using bit operations in RAM model [Fredman, Willard 1994]
3. $O(m + n)$ expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]
4. $O((n + m)\alpha(m, n))$ time [Chazelle 2000]
5. Still open: Is there an $O(n + m)$ time deterministic algorithm in the comparison model?