20.4.2
The safe edges form the MST
Lemma 20.3.

Let G be a connected graph with distinct edge costs, then the set of safe edges form a connected graph.

Proof.

1. Suppose not. Let S be a connected component in the graph induced by the safe edges.
2. Consider the edges crossing S, there must be a safe edge among them since edge costs are distinct and so we must have picked it.
Safe Edges do not contain a cycle

Lemma 20.4.
Let G be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.
Proposition 20.5: proved every edge in graph is either safe or unsafe. If \exists cycle, then by definition the most expensive edge in the cycle is unsafe. Contradiction.
Lemma 20.4.

Let G be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let π a cycle made of safe edges.

e: Most expensive edge in the cycle π.

$C = (S, V \setminus S)$: Cut that e is safe for.

π must have at least two edges in C.

f: cheapest edge in $\pi \cap C$.

e is not cheapest edge in C.

A contradiction.
Safe Edges do not contain a cycle

Lemma 20.4.

Let G be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let π a cycle made of safe edges.

e: Most expensive edge in the cycle π.

$C = (S, V \setminus S)$: Cut that e is safe for.

π must have at least two edges in C.

f: cheapest edge in $\pi \cap C$.

e is not cheapest edge in C.

A contradiction. \square
Safe Edges do not contain a cycle

Lemma 20.4.
Let G be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.
Assume false, and let π a cycle made of safe edges.

- e: Most expensive edge in the cycle π.
- $\mathcal{C} = (S, V \setminus S)$: Cut that e is safe for.
- π must have at least two edges in \mathcal{C}.

- f: cheapest edge in $\pi \cap \mathcal{C}$.
- e is not cheapest edge in \mathcal{C}.
A contradiction.
Lemma 20.4.

Let G be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let π a cycle made of safe edges.
- e: Most expensive edge in the cycle π.
- $C = (S, V \setminus S)$: Cut that e is safe for.
- π must have at least two edges in C.
- f: Cheapest edge in $\pi \cap C$.
- e is not cheapest edge in C.

A contradiction.
Safe Edges form an MST

Corollary 20.5.

Let G be a connected graph with distinct edge costs, then set of safe edges form the unique MST of G.

Consequence: Every correct MST algorithm when G has unique edge costs includes exactly the safe edges.
Corollary 20.5.

Let G be a connected graph with distinct edge costs, then set of safe edges form the unique MST of G.

Consequence: Every correct MST algorithm when G has unique edge costs includes exactly the safe edges.
THE END

...

(for now)