20.1.2
Some graph theory
Some basic properties of Spanning Trees

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph H of G is spanning for G, if G and H have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has $n - 1$ edges.
Some basic properties of Spanning Trees

- **Tree** = undirected graph in which any two vertices are connected by exactly one path.
- **Tree** = a connected graph with no cycles.
- Subgraph H of G is **spanning** for G, if G and H have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has $n - 1$ edges.
Some basic properties of Spanning Trees

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph H of G is spanning for G, if G and H have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has $n - 1$ edges.
Some basic properties of Spanning Trees

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph H of G is **spanning** for G, if G and H have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has $n - 1$ edges.
Some basic properties of Spanning Trees

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph H of G is **spanning** for G, if G and H have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has $n - 1$ edges.
Some basic properties of Spanning Trees

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph H of G is **spanning** for G, if G and H have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has $n - 1$ edges.
Lemma 20.1.

\(T = (V, E_T) \): a spanning tree of \(G = (V, E) \). For every non-tree edge \(e \in E \setminus E_T \) there is a unique cycle \(C \) in \(T + e \). For every edge \(f \in C - \{e\} \), \(T - f + e \) is another spanning tree of \(G \).
THE END

...

(for now)