19.6.3
Proving optimality of earliest finish time
Earliest finish time: A quick recall

Time
Earliest finish time: A quick recall

Time
Earliest finish time: A quick recall

Time
Earliest finish time: A quick recall
Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts.

For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$.
Proving Optimality

1. **Correctness:** Clearly the algorithm returns a set of jobs that does not have any conflicts.

2. For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$.
Proving Optimality

1. **Correctness:** Clearly the algorithm returns a set of jobs that does not have any conflicts.

2. For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$.
Proving Optimality

1. **Correctness**: Clearly the algorithm returns a set of jobs that does not have any conflicts.

2. For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$
Proving Optimality

1. **Correctness:** Clearly the algorithm returns a set of jobs that does not have any conflicts.

2. For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$.

![Diagram of jobs and conflicts](image-url)
Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts.

For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O = X$? Not likely!

Instead we will show that $|O| = |X|$.
Claim 19.3.

Let \(i \) be the first interval picked by Greedy into the solution. Let \(O \) be the optimal solution.

If \(i \not\in O \), there is exactly one interval \(j_1 \in O \) that conflicts with \(i \).

Proof.

1. No \(j \in O \) conflicts \(i \) \(\implies \) \(O \) is not opt!
2. Suppose \(j_1, j_2 \in O \) such that \(j_1 \neq j_2 \) and both \(j_1 \) and \(j_2 \) conflict with \(i \).
3. Since \(i \) has earliest finish time, \(j_1 \) and \(i \) overlap at \(f(i) \).
4. For same reason \(j_2 \) also overlaps with \(i \) at \(f(i) \).
5. Implies that \(j_1, j_2 \) overlap at \(f(i) \) but intervals in \(O \) cannot overlap.
Proof of Optimality: Key Lemma

Lemma 19.4.

\(i_1 \) be first interval picked by Greedy. There exists an optimum solution that contains \(i_1 \).

Proof.

Let \(O \) be an arbitrary optimum solution. If \(i_1 \in O \) we are done.

By **Claim 19.3** ...

1. Exists exactly one \(j_1 \in O \) conflicting with \(i_1 \).
2. Form a new set \(O' \) by removing \(j_1 \) from \(O \) and adding \(i_1 \), that is \(O' = (O - \{j_1\}) \cup \{i_1\} \).
3. From claim, \(O' \) is a feasible solution (no conflicts).
4. Since \(|O'| = |O| \), \(O' \) is also an optimum solution and it contains \(i_1 \).
Proof of Optimality: Key Lemma

Lemma 19.4.

i_1 be first interval picked by Greedy. There exists an optimum solution that contains *i_1*.

Proof.

Let *O* be an arbitrary optimum solution. If *i_1* ∈ *O* we are done.

By Claim 19.3 ...

1. Exists exactly one *j_1* ∈ *O* conflicting with *i_1*.
2. Form a new set *O’* by removing *j_1* from *O* and adding *i_1*, that is *O’* = (*O* − {*j_1*}) ∪ {*i_1*}.
3. From claim, *O’* is a feasible solution (no conflicts).
4. Since |*O’*| = |*O*|, *O’* is also an optimum solution and it contains *i_1*.

□
Proof of Optimality: Key Lemma

Lemma 19.4.

\(i_1 \) be first interval picked by Greedy. There exists an optimum solution that contains \(i_1 \).

Proof.

Let \(O \) be an arbitrary optimum solution. If \(i_1 \in O \) we are done.

By Claim 19.3 ...

1. Exists exactly one \(j_1 \in O \) conflicting with \(i_1 \).
2. Form a new set \(O' \) by removing \(j_1 \) from \(O \) and adding \(i_1 \), that is \(O' = (O - \{j_1\}) \cup \{i_1\} \).
3. From claim, \(O' \) is a feasible solution (no conflicts).
4. Since \(|O'| = |O| \), \(O' \) is also an optimum solution and it contains \(i_1 \).
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: $n = 1$. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for $i < n$.

Let K be an input (i.e., instance) with n intervals

$i_1 \leftarrow$ First interval picked by greedy algorithm.

$K' \leftarrow$ The result of removing i_1 and all conflicting intervals from K.

$|K'| = |K| - 1.$

$G(K), G(K')$: Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \implies optimum solution O to K with $i_1 \in O$.

Let $O' = O - \{i_1\}$. O' is a solution to K'.

$$|G(K)| = 1 + |G(K')|$$

$$\geq 1 + |O'|$$

$$= |O|$$

from Greedy description

By induction, $G(I')$ is optimum for I')
Proof by Induction on number of intervals.

Base Case: \(n = 1 \). Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for \(i < n \).

Let \(K \) be an input (i.e., instance) with \(n \) intervals

\[i_1 \leftarrow \text{First interval picked by greedy algorithm.} \]
\[K' \leftarrow \text{The result of removing } i_1 \text{ and all conflicting intervals from } K. \]

\[|K'| = |K| - 1. \]

\(G(K), G(K') \): Solution produced by Greedy on \(K \) and \(K' \), respectively.

Lemma 19.4 \(\implies \) optimum solution \(O \) to \(K \) with \(i_1 \in O \).

Let \(O' = O - \{i_1\} \). \(O' \) is a solution to \(K' \).

\[
|G(K)| = 1 + |G(K')| \\
\geq 1 + |O'| \quad \text{from Greedy description} \\
= |O| \\
\]

By induction, \(G(I') \) is optimum for \(I' \)
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: $n = 1$. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for $i < n$.

Let K be an input (i.e., instance) with n intervals

$i_1 \leftarrow$ First interval picked by greedy algorithm.

$K' \leftarrow$ The result of removing i_1 and all conflicting intervals from K.

$|K'| = |K| - 1$.

$G(K), G(K')$: Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \implies optimum solution O to K with $i_1 \in O$.

Let $O' = O - \{i_1\}$. O' is a solution to K'.

$$|G(K)| = 1 + |G(K')|$$

from Greedy description

$$\geq 1 + |O'|$$

By induction, $G(I')$ is optimum for I'

$$= |O|$$
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: $n = 1$. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for $i < n$.

Let K be an input (i.e., instance) with n intervals

$i_1 \leftarrow$ First interval picked by greedy algorithm.

$K' \leftarrow$ The result of removing i_1 and all conflicting intervals from K.

$|K'| = |K| - 1$.

$G(K), G(K')$: Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \implies optimum solution O to K with $i_1 \in O$.

Let $O' = O - \{i_1\}$. O' is a solution to K'.

$$|G(K)| = 1 + |G(K')|$$

from Greedy description

$$\geq 1 + |O'|$$

By induction, $G(I')$ is optimum for I'

$$= |O|$$
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: \(n = 1 \). Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for \(i < n \).

Let \(K \) be an input (i.e., instance) with \(n \) intervals

\(i_1 \Leftarrow \) First interval picked by greedy algorithm.

\(K' \Leftarrow \) The result of removing \(i_1 \) and all conflicting intervals from \(K \).

\(|K'| = |K| - 1 \).

\(G(K), G(K') \): Solution produced by Greedy on \(K \) and \(K' \), respectively.

Lemma 19.4 \(\implies \) optimum solution \(O \) to \(K \) with \(i_1 \in O \).

Let \(O' = O - \{i_1\} \). \(O' \) is a solution to \(K' \).

\[
|G(K)| = 1 + |G(K')| \\
\geq 1 + |O'| \\
= |O|
\]

from Greedy description

By induction, \(G(I') \) is optimum for \(I' \)
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: \(n = 1 \). Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for \(i < n \).

Let \(K \) be an input (i.e., instance) with \(n \) intervals

- \(i_1 \leftarrow \) First interval picked by greedy algorithm.
- \(K' \leftarrow \) The result of removing \(i_1 \) and all conflicting intervals from \(K \).

\(|K'| = |K| - 1 \).

\(G(K), G(K'): \) Solution produced by Greedy on \(K \) and \(K' \), respectively.

Lemma 19.4 \(\implies \) optimum solution \(O \) to \(K \) with \(i_1 \in O \).

Let \(O' = O - \{i_1\} \). \(O' \) is a solution to \(K' \).

\[
|G(K)| = 1 + |G(K')| \geq 1 + |O'| = |O|
\]

from Greedy description

By induction, \(G(I') \) is optimum for \(I' \)
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: \(n = 1 \). Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for \(i < n \).

Let \(K \) be an input (i.e., instance) with \(n \) intervals

- \(i_1 \) \(\leftarrow \) First interval picked by greedy algorithm.
- \(K' \) \(\leftarrow \) The result of removing \(i_1 \) and all conflicting intervals from \(K \).

\[|K'| = |K| - 1. \]

\(G(K), G(K') \): Solution produced by Greedy on \(K \) and \(K' \), respectively.

Lemma 19.4 \(\implies \) optimum solution \(O \) to \(K \) with \(i_1 \in O \).

Let \(O' = O - \{i_1\} \). \(O' \) is a solution to \(K' \).

\[
|G(K)| = 1 + |G(K')| \quad \text{from Greedy description} \\
\geq 1 + |O'| \quad \text{By induction, } G(I') \text{ is optimum for } I' \\
= |O|
\]
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: $n = 1$. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for $i < n$.

Let K be an input (i.e., instance) with n intervals

- $i_1 \leftarrow$ First interval picked by greedy algorithm.
- $K' \leftarrow$ The result of removing i_1 and all conflicting intervals from K.
- $|K'| = |K| - 1$.

$G(K), G(K')$: Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \implies optimum solution O to K with $i_1 \in O$.

Let $O' = O - \{i_1\}$. O' is a solution to K'.

$$|G(K)| = 1 + |G(K')|$$

from Greedy description

$$\geq 1 + |O'|$$

By induction, $G(I')$ is optimum for I'

$$= |O|$$
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: \(n = 1 \). Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for \(i < n \).

Let \(K \) be an input (i.e., instance) with \(n \) intervals

\(i_1 \leftarrow \) First interval picked by greedy algorithm.

\(K' \leftarrow \) The result of removing \(i_1 \) and all conflicting intervals from \(K \).

\(|K'| = |K| - 1\).

\(G(K), G(K') \): Solution produced by Greedy on \(K \) and \(K' \), respectively.

Lemma 19.4 \(\implies \) optimum solution \(O \) to \(K \) with \(i_1 \in O \).

Let \(O' = O - \{i_1\} \). \(O' \) is a solution to \(K' \).

\[
|G(K)| = 1 + |G(K')| \quad \text{from Greedy description}
\]

\[
\geq 1 + |O'| \quad \text{By induction, } G(I') \text{ is optimum for } I'
\]

\[
= |O|
\]
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: \(n = 1 \). Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for \(i < n \).

Let \(K \) be an input (i.e., instance) with \(n \) intervals.

\(i_1 \leftarrow \) First interval picked by greedy algorithm.

\(K' \leftarrow \) The result of removing \(i_1 \) and all conflicting intervals from \(K \).

\(|K'| = |K| - 1\).

\(G(K), G(K') \): Solution produced by Greedy on \(K \) and \(K' \), respectively.

Lemma 19.4 \(\implies \) optimum solution \(O \) to \(K \) with \(i_1 \in O \).

Let \(O' = O - \{i_1\} \). \(O' \) is a solution to \(K' \).

\[
|G(K)| = 1 + |G(K')| \quad \text{from Greedy description}
\]

\[
\geq 1 + |O'| \quad \text{By induction, } G(I') \text{ is optimum for } I'
\]

\[
= |O|
\]
THE END

...

(for now)