19.5

Maximum Weight Subset of Elements: Cardinality and Beyond
Picking k elements to maximize total weight

1. Given n items each with non-negative weights/profits and integer $1 \leq k \leq n$.
2. Goal: pick k elements to maximize total weight of items picked.

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

$k = 2$:

$k = 3$:

$k = 4$:
Greedy Template

\[
N \text{ is the set of all elements } X \leftarrow \emptyset \\
(* \ X \text{ will store all the elements that will be picked } *)
\]

while \(|X| < k \) and \(N \) is not empty do

\[\text{choose } e_j \in N \text{ of maximum weight} \]

\[\text{add } e_j \text{ to } X \]

\[\text{remove } e_j \text{ from } N \]

return the set \(X \)

Remark: One can rephrase algorithm simply as sorting elements in decreasing weight order and picking the top \(k \) elements but the above template generalizes to other settings a bit more easily.

Theorem 19.1.

Greedy is optimal for picking \(k \) elements of maximum weight.
Greedy Template

\[N \text{ is the set of all elements } X \leftarrow \emptyset \]
(* \(X \) will store all the elements that will be picked *)

while \(|X| < k \) and \(N \) is not empty do
 choose \(e_j \in N \) of maximum weight
 add \(e_j \) to \(X \)
 remove \(e_j \) from \(N \)

return the set \(X \)

Remark: One can rephrase algorithm simply as sorting elements in decreasing weight order and picking the top \(k \) elements but the above template generalizes to other settings a bit more easily.

Theorem 19.1.

Greedy is optimal for picking \(k \) elements of maximum weight.
A more interesting problem

1. Given n items $N = \{e_1, e_2, \ldots, e_n\}$. Each item e_i has a non-negative weight w_i.
2. Items partitioned into h sets N_1, N_2, \ldots, N_h. Think of each item having one of h colors.
3. Given integers k_1, k_2, \ldots, k_h and another integer k
4. Goal: pick k elements such that no more than k_i from N_i to maximize total weight of items picked.

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

$N_1 = \{e_1, e_2, e_3\}$, $N_2 = \{e_4, e_5\}$, $N_3 = \{e_6, e_7\}$

$k = 4$, $k_1 = 2$, $k_2 = 1$, $k_3 = 2$
Greedy Template

\[N \text{ is the set of all elements } X \leftarrow \emptyset \]
(* \(X \) will store all the elements that will be picked *)

\[\text{while } N \text{ is not empty do} \]
\[N' = \{ e_i \in N \mid X \cup \{ e_i \} \text{ is feasible} \} \]
\[\text{if } N' = \emptyset \text{ then break} \]
\[\text{choose } e_j \in N' \text{ of maximum weight} \]
\[\text{add } e_j \text{ to } X \]
\[\text{remove } e_j \text{ from } N \]

\[\text{return the set } X \]

Theorem 19.2.

Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum weight independent set in a matroid. Beyond scope of course.
Greedy Template

\[N \text{ is the set of all elements } X \leftarrow \emptyset \]
(* X will store all the elements that will be picked *)

while \(N \) is not empty do

\[N' = \{ e_i \in N \mid X \cup \{ e_i \} \text{ is feasible} \} \]

if \(N' = \emptyset \) then break

choose \(e_j \in N' \) of maximum weight

add \(e_j \) to \(X \)

remove \(e_j \) from \(N \)

return the set \(X \)

Theorem 19.2.

Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum weight independent set in a matroid. Beyond scope of course.
THE END

... (for now)