19.4
Scheduling to Minimize Lateness
Scheduling to Minimize Lateness

1. Given jobs J_1, J_2, \ldots, J_n with deadlines and processing times to be scheduled on a single resource.

2. If a job i starts at time s_i then it will finish at time $f_i = s_i + t_i$, where t_i is its processing time. d_i: deadline.

3. The lateness of a job is $\ell_i = \max(0, f_i - d_i)$.

4. Schedule all jobs such that $L = \max \ell_i$ is minimized.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_i</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

$\ell_1 = 2$, $\ell_5 = 0$, $\ell_4 = 6$
Scheduling to Minimize Lateness

1. Given jobs J_1, J_2, \ldots, J_n with deadlines and processing times to be scheduled on a single resource.

2. If a job i starts at time s_i then it will finish at time $f_i = s_i + t_i$, where t_i is its processing time. d_i: deadline.

3. The lateness of a job is $\ell_i = \max(0, f_i - d_i)$.

4. Schedule all jobs such that $L = \max \ell_i$ is minimized.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_i</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

\[\ell_1 = 2 \quad \ell_5 = 0 \quad \ell_4 = 6 \]

- J_3: 0
- J_2: 1
- J_6: 2
- J_1: 3
- J_5: 4
- J_4: 5
- J_1: 6
- J_5: 7
- J_4: 8
- J_1: 9
- J_5: 10
- J_4: 11
- J_1: 12
- J_5: 13
- J_4: 14
- J_4: 15
Greedy Template

Initially \(R \) is the set of all requests
\[
\text{curr_time} = 0 \\
\text{max_lateness} = 0 \\
\text{while } R \text{ is not empty do} \\
\quad \text{choose } i \in R \\
\quad \text{curr_time} = \text{curr_time} + t_i \\
\quad \text{if } (\text{curr_time} > d_i) \text{ then} \\
\quad \quad \text{max_lateness} = \max(\text{curr_time} - d_i, \text{max_lateness}) \\
\text{return } \text{max_lateness}
\]

Main task: Decide the order in which to process jobs in \(R \)
Greedy Template

Initially R is the set of all requests
\[
\begin{align*}
\text{curr_time} &= 0 \\
\text{max_lateness} &= 0 \\
\text{while } R \text{ is not empty do} \\
\quad \text{choose } i \in R \\
\quad \text{curr_time} &= \text{curr_time} + t_i \\
\quad \text{if } (\text{curr_time} > d_i) \text{ then} \\
\quad \quad \text{max_lateness} &= \max(\text{curr_time} - d_i, \text{max_lateness}) \\
\end{align*}
\]

return max_lateness

Main task: Decide the order in which to process jobs in R
Three Algorithms

1. Shortest job first — sort according to t_i.
2. Shortest slack first — sort according to $d_i - t_i$.
3. EDF = Earliest deadline first — sort according to d_i.

Counter examples for first two: exercise
Three Algorithms

1. Shortest job first — sort according to t_i.
2. Shortest slack first — sort according to $d_i - t_i$.
3. EDF = Earliest deadline first — sort according to d_i.

Counter examples for first two: exercise
Theorem 19.1.
Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma 19.2.
If there is a feasible schedule then there is one with no idle time before all jobs are finished.
Earliest Deadline First

Theorem 19.1.

Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma 19.2.

If there is a feasible schedule then there is one with no idle time before all jobs are finished.
Earliest Deadline First

Theorem 19.1.

Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma 19.2.

If there is a feasible schedule then there is one with no idle time before all jobs are finished.
Earliest Deadline First

Theorem 19.1.

Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma 19.2.

If there is a feasible schedule then there is one with no idle time before all jobs are finished.
Inversions

EDF = Earliest Deadline First

Assume jobs are sorted such that \(d_1 \leq d_2 \leq \ldots \leq d_n \). Hence EDF schedules them in this order.

Definition 19.3.

A schedule \(S \) is said to have an **inversion** if there are jobs \(i \) and \(j \) such that \(S \) schedules \(i \) before \(j \), but \(d_i > d_j \).

Claim 19.4.

If a schedule \(S \) has an inversion then there is an inversion between two adjacent scheduled jobs.

Proof: exercise.
Inversions

EDF = Earliest Deadline First

Assume jobs are sorted such that $d_1 \leq d_2 \leq \ldots \leq d_n$. Hence EDF schedules them in this order.

Definition 19.3.

A schedule S is said to have an inversion if there are jobs i and j such that S schedules i before j, but $d_i > d_j$.

Claim 19.4.

If a schedule S has an inversion then there is an inversion between two adjacent scheduled jobs.

Proof: exercise.
Proof sketch of Optimality of EDF

- Let S be an optimum schedule with smallest number of inversions.
- If S has no inversions then this is same as EDF and we are done.
- Else S has two adjacent jobs i and j with $d_i > d_j$.
- Swap positions of i and j to obtain a new schedule S'

Claim 19.5.

Maximum lateness of S' is no more than that of S. And S' has strictly fewer inversions than S.
THE END

...(for now)