19.3

Scheduling Jobs to Minimize Average Waiting Time
The Problem

- n jobs J_1, J_2, \ldots, J_n.
- Each J_i has non-negative processing time p_i.
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time.
- Waiting time of J_i in schedule σ: sum of processing times of all jobs scheduled before J_i.

Example:

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Example: schedule is $J_1, J_2, J_3, J_4, J_5, J_6$. Total waiting time is

$$0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + \ldots =$$

Optimal schedule: Shortest Job First. $J_3, J_5, J_1, J_2, J_6, J_4$.
The Problem

- **n** jobs J_1, J_2, \ldots, J_n.
- Each J_i has non-negative processing time p_i.
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time.
- Waiting time of J_i in schedule σ: sum of processing times of all jobs scheduled before J_i.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Example: schedule is $J_1, J_2, J_3, J_4, J_5, J_6$. Total waiting time is

$$0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + \ldots =$$

Optimal schedule: Shortest Job First. $J_3, J_5, J_1, J_2, J_6, J_4$.
The Problem

- n jobs J_1, J_2, \ldots, J_n.
- Each J_i has non-negative processing time p_i.
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time.
- Waiting time of J_i in schedule σ: sum of processing times of all jobs scheduled before J_i.

<table>
<thead>
<tr>
<th>time</th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Example: schedule is $J_1, J_2, J_3, J_4, J_5, J_6$. Total waiting time is

$$0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + \ldots =$$

Optimal schedule: Shortest Job First. $J_3, J_5, J_1, J_2, J_6, J_4$.
The Problem

- n jobs J_1, J_2, \ldots, J_n.
- Each J_i has non-negative processing time p_i.
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time.
- Waiting time of J_i in schedule σ: sum of processing times of all jobs scheduled before J_i.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$time$</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Example: schedule is $J_1, J_2, J_3, J_4, J_5, J_6$. Total waiting time is

$$0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + \ldots =$$

Optimal schedule: Shortest Job First. $J_3, J_5, J_1, J_2, J_6, J_4$.
Theorem 19.1.

Shortest Job First gives an optimum schedule for the problem of minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order of processing time and hence $p_1 \leq p_2 \leq \ldots \leq p_n$ and SJF order is J_1, J_2, \ldots, J_n.
Theorem 19.1.

Shortest Job First gives an optimum schedule for the problem of minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order of processing time and hence $p_1 \leq p_2 \leq \ldots \leq p_n$ and SJF order is J_1, J_2, \ldots, J_n.
Theorem 19.1.

Shortest Job First gives an optimum schedule for the problem of minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order of processing time and hence $p_1 \leq p_2 \leq \ldots \leq p_n$ and SJF order is J_1, J_2, \ldots, J_n.
Optimality of SJF: Proof by picture
Optimality of SJF: Proof by picture
Optimality of **SJF**: Proof by picture
Optimality of SJF: Proof by picture
Optimality of SJF: Proof by picture
Inversions

Definition 19.2.
A schedule $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ has an inversion if there are jobs J_a and J_b such that S schedules J_a before J_b, but $p_a > p_b$.

Claim 19.3.
If a schedule has an inversion then there is an inversion between two adjacent scheduled jobs.

Proof: exercise.
Inversions

Definition 19.2.
A schedule \(J_{i_1}, J_{i_2}, \ldots, J_{i_n} \) has an inversion if there are jobs \(J_a \) and \(J_b \) such that \(S \) schedules \(J_a \) before \(J_b \), but \(p_a > p_b \).

Claim 19.3.
If a schedule has an inversion then there is an inversion between two adjacent scheduled jobs.

Proof: exercise.
Proof of optimality of SJF

SJF = Shortest Job First

Recall SJF order is J_1, J_2, \ldots, J_n.

- Let $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ be an optimum schedule with fewest inversions.
- If schedule has no inversions then it is identical to SJF schedule and we are done.
- Otherwise there is an $1 \leq \ell < n$ such that $i_\ell > i_{\ell+1}$ since schedule has inversion among two adjacent scheduled jobs

Claim 19.4.

The schedule obtained from $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ by exchanging/swapping positions of jobs J_{i_ℓ} and $J_{i_{\ell+1}}$ is also optimal and has one fewer inversion.

Assuming claim we obtain a contradiction and hence optimum schedule with fewest inversions must be the SJF schedule.
Proof of optimality of SJF

SJF = Shortest Job First

Recall SJF order is J_1, J_2, \ldots, J_n.

- Let $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ be an optimum schedule with fewest inversions.
- If schedule has no inversions then it is identical to SJF schedule and we are done.
- Otherwise there is an $1 \leq \ell < n$ such that $i_\ell > i_{\ell+1}$ since schedule has inversion among two adjacent scheduled jobs.

Claim 19.4.

The schedule obtained from $J_{i_1}, J_{i_2}, \ldots, J_{i_n}$ by exchanging/swapping positions of jobs J_{i_ℓ} and $J_{i_{\ell+1}}$ is also optimal and has one fewer inversion.

Assuming claim we obtain a contradiction and hence optimum schedule with fewest inversions must be the SJF schedule.
Exercise: A Weighted Version

- n jobs J_1, J_2, \ldots, J_n. J_i has non-negative processing time p_i and a non-negative weight w_i
- One server/machine/person available to process jobs.
- Schedule/order the jobs to minimize total or average waiting time.
- Waiting time of J_i in schedule σ: sum of processing times of all jobs scheduled before J_i
- Goal: minimize total weighted waiting time.
- Formally, compute a permutation π that minimizes $\sum_{i=1}^{n} \left(\sum_{j=1}^{i-1} p_{\pi(j)} \right) w_{\pi(i)}$.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
<th>J_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>weight</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>100</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
THE END
...
(for now)