18.4
All Pairs Shortest Paths
18.4.1
Problem definition and what we can already do
Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.
3. Find shortest paths for all pairs of nodes.
SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: $O(nm)$.
SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: $O(nm)$.
All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph \(G = (V, E) \) with edge lengths. For edge \(e = (u, v) \), \(\ell(e) = \ell(u, v) \) is its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms \(n \) times, once for each vertex.

1. Non-negative lengths. \(O(nm \log n) \) with heaps and \(O(nm + n^2 \log n) \) using advanced priority queues.

2. Arbitrary edge lengths: \(O(n^2 m) \).

\(\Theta(n^4) \) if \(m = \Omega(n^2) \).

Can we do better?
All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

- **Input** A (undirected or directed) graph $G = (V, E)$ with edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
- **Find shortest paths for all pairs of nodes.**

Apply single-source algorithms n times, once for each vertex.

- **Non-negative lengths.** $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- **Arbitrary edge lengths:** $O(n^2m)$.
 - $\Theta(n^4)$ if $m = \Omega(n^2)$.

Can we do better?
All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input: A (undirected or directed) graph $G = (V, E)$ with edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

1. Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1. Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.

2. Arbitrary edge lengths: $O(n^2 m)$. $\Theta(n^4)$ if $m = \Omega(n^2)$.

Can we do better?
THE END

... (for now)